T-Digest data structure
Project description
# tdigest
### Efficient percentile estimation of streaming or distributed data
[![PyPI version](https://badge.fury.io/py/tdigest.svg)](https://badge.fury.io/py/tdigest)
[![Build Status](https://travis-ci.org/CamDavidsonPilon/tdigest.svg?branch=master)](https://travis-ci.org/CamDavidsonPilon/tdigest)
This is a Python implementation of Ted Dunning's [t-digest](https://github.com/tdunning/t-digest) data structure. The t-digest data structure is designed around computing accurate estimates from either streaming data, or distributed data. These estimates are percentiles, quantiles, trimmed means, etc. Two t-digests can be added, making the data structure ideal for map-reduce settings, and can be serialized into much less than 10kB (instead of storing the entire list of data).
See a blog post about it here: [Percentile and Quantile Estimation of Big Data: The t-Digest](http://dataorigami.net/blogs/napkin-folding/19055451-percentile-and-quantile-estimation-of-big-data-the-t-digest)
### Installation
*tdigest* is compatible with both Python 2 and Python 3.
```
pip install tdigest
```
### Usage
#### Update the digest sequentially
```
from tdigest import TDigest
from numpy.random import random
digest = TDigest()
for x in range(5000):
digest.update(random())
print(digest.percentile(15)) # about 0.15, as 0.15 is the 15th percentile of the Uniform(0,1) distribution
```
#### Update the digest in batches
```
another_digest = TDigest()
another_digest.batch_update(random(5000))
print(another_digest.percentile(15))
```
#### Sum two digests to create a new digest
```
sum_digest = digest + another_digest
sum_digest.percentile(30) # about 0.3
```
### API
`TDigest.`
- `update(x, w=1)`: update the tdigest with value `x` and weight `w`.
- `batch_update(x, w=1)`: update the tdigest with values in array `x` and weight `w`.
- `compress()`: perform a compression on the underlying data structure that will shrink the memory footprint of it, without hurting accuracy. Good to perform after adding many values.
- `percentile(p)`: return the `p`th percentile. Example: `p=50` is the median.
- `cdf(x)`: return the CDF the value `x` is at.
- `trimmed_mean(p1, p2)`: return the mean of data set without the values below and above the `p1` and `p2` percentile respectively.
### Efficient percentile estimation of streaming or distributed data
[![PyPI version](https://badge.fury.io/py/tdigest.svg)](https://badge.fury.io/py/tdigest)
[![Build Status](https://travis-ci.org/CamDavidsonPilon/tdigest.svg?branch=master)](https://travis-ci.org/CamDavidsonPilon/tdigest)
This is a Python implementation of Ted Dunning's [t-digest](https://github.com/tdunning/t-digest) data structure. The t-digest data structure is designed around computing accurate estimates from either streaming data, or distributed data. These estimates are percentiles, quantiles, trimmed means, etc. Two t-digests can be added, making the data structure ideal for map-reduce settings, and can be serialized into much less than 10kB (instead of storing the entire list of data).
See a blog post about it here: [Percentile and Quantile Estimation of Big Data: The t-Digest](http://dataorigami.net/blogs/napkin-folding/19055451-percentile-and-quantile-estimation-of-big-data-the-t-digest)
### Installation
*tdigest* is compatible with both Python 2 and Python 3.
```
pip install tdigest
```
### Usage
#### Update the digest sequentially
```
from tdigest import TDigest
from numpy.random import random
digest = TDigest()
for x in range(5000):
digest.update(random())
print(digest.percentile(15)) # about 0.15, as 0.15 is the 15th percentile of the Uniform(0,1) distribution
```
#### Update the digest in batches
```
another_digest = TDigest()
another_digest.batch_update(random(5000))
print(another_digest.percentile(15))
```
#### Sum two digests to create a new digest
```
sum_digest = digest + another_digest
sum_digest.percentile(30) # about 0.3
```
### API
`TDigest.`
- `update(x, w=1)`: update the tdigest with value `x` and weight `w`.
- `batch_update(x, w=1)`: update the tdigest with values in array `x` and weight `w`.
- `compress()`: perform a compression on the underlying data structure that will shrink the memory footprint of it, without hurting accuracy. Good to perform after adding many values.
- `percentile(p)`: return the `p`th percentile. Example: `p=50` is the median.
- `cdf(x)`: return the CDF the value `x` is at.
- `trimmed_mean(p1, p2)`: return the mean of data set without the values below and above the `p1` and `p2` percentile respectively.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
tdigest-0.5.1.0.tar.gz
(5.8 kB
view details)
Built Distributions
File details
Details for the file tdigest-0.5.1.0.tar.gz
.
File metadata
- Download URL: tdigest-0.5.1.0.tar.gz
- Upload date:
- Size: 5.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5546c32c0e7c18f6873a00637afa9b524290d47f0f0de6964c1247787e62bf8a |
|
MD5 | 5494e0c7e4f7c3df4450feb0558e630c |
|
BLAKE2b-256 | 6f05678ce3837a02f4a9dbef8cb88ef2bbc38be2127ba6dda4ef0ed365f788eb |
File details
Details for the file tdigest-0.5.1.0-py3-none-any.whl
.
File metadata
- Download URL: tdigest-0.5.1.0-py3-none-any.whl
- Upload date:
- Size: 9.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f42099001442d461df17f28f3c47bc11bcf6f0fa4716bec718e8c97acd2dcf95 |
|
MD5 | fd2ee13e12c27722a91350b025b12fe1 |
|
BLAKE2b-256 | c5850cb268e3efa0532146d0c96a23f2574cdb0ba4123286f82821362e51d524 |
File details
Details for the file tdigest-0.5.1.0-py2-none-any.whl
.
File metadata
- Download URL: tdigest-0.5.1.0-py2-none-any.whl
- Upload date:
- Size: 9.7 kB
- Tags: Python 2
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 01fb1e02d9ecb8e9c4810405827c0dc84a9afc600d1cba232c9d77834e9a3691 |
|
MD5 | 055991a8e0b277151827250e41d5658b |
|
BLAKE2b-256 | 51bfb115637cdc037a31771c628d84cdacf79c40da593e6c81c2372efedf5632 |