Skip to main content

A library for exploring and validating machine learning data.

Project description

TensorFlow Data Validation

Python PyPI Documentation

TensorFlow Data Validation (TFDV) is a library for exploring and validating machine learning data. It is designed to be highly scalable and to work well with TensorFlow and TensorFlow Extended (TFX).

TF Data Validation includes:

  • Scalable calculation of summary statistics of training and test data.
  • Integration with a viewer for data distributions and statistics, as well as faceted comparison of pairs of features (Facets)
  • Automated data-schema generation to describe expectations about data like required values, ranges, and vocabularies
  • A schema viewer to help you inspect the schema.
  • Anomaly detection to identify anomalies, such as missing features, out-of-range values, or wrong feature types, to name a few.
  • An anomalies viewer so that you can see what features have anomalies and learn more in order to correct them.

For instructions on using TFDV, see the get started guide and try out the example notebook. Some of the techniques implemented in TFDV are described in a technical paper published in SysML'19.

Installing from PyPI

The recommended way to install TFDV is using the PyPI package:

pip install tensorflow-data-validation

Nightly Packages

TFDV also hosts nightly packages at https://pypi-nightly.tensorflow.org on Google Cloud. To install the latest nightly package, please use the following command:

export TFX_DEPENDENCY_SELECTOR=NIGHTLY
pip install --extra-index-url https://pypi-nightly.tensorflow.org/simple tensorflow-data-validation

This will install the nightly packages for the major dependencies of TFDV such as TFX Basic Shared Libraries (TFX-BSL) and TensorFlow Metadata (TFMD).

Sometimes TFDV uses those dependencies' most recent changes, which are not yet released. Because of this, it is safer to use nightly versions of those dependent libraries when using nightly TFDV. Export the TFX_DEPENDENCY_SELECTOR environment variable to do so.

Build with Docker

This is the recommended way to build TFDV under Linux, and is continuously tested at Google.

1. Install Docker

Please first install docker and docker-compose by following the directions: docker; docker-compose.

2. Clone the TFDV repository

git clone https://github.com/tensorflow/data-validation
cd data-validation

Note that these instructions will install the latest master branch of TensorFlow Data Validation. If you want to install a specific branch (such as a release branch), pass -b <branchname> to the git clone command.

3. Build the pip package

Then, run the following at the project root:

sudo docker-compose build manylinux2010
sudo docker-compose run -e PYTHON_VERSION=${PYTHON_VERSION} manylinux2010

where PYTHON_VERSION is one of {37, 38, 39}.

A wheel will be produced under dist/.

4. Install the pip package

pip install dist/*.whl

Build from source

1. Prerequisites

To compile and use TFDV, you need to set up some prerequisites.

Install NumPy

If NumPy is not installed on your system, install it now by following these directions.

Install Bazel

If Bazel is not installed on your system, install it now by following these directions.

2. Clone the TFDV repository

git clone https://github.com/tensorflow/data-validation
cd data-validation

Note that these instructions will install the latest master branch of TensorFlow Data Validation. If you want to install a specific branch (such as a release branch), pass -b <branchname> to the git clone command.

3. Build the pip package

TFDV wheel is Python version dependent -- to build the pip package that works for a specific Python version, use that Python binary to run:

python setup.py bdist_wheel

You can find the generated .whl file in the dist subdirectory.

4. Install the pip package

pip install dist/*.whl

Supported platforms

TFDV is tested on the following 64-bit operating systems:

  • macOS 10.14.6 (Mojave) or later.
  • Ubuntu 16.04 or later.
  • Windows 7 or later.

Notable Dependencies

TensorFlow is required.

Apache Beam is required; it's the way that efficient distributed computation is supported. By default, Apache Beam runs in local mode but can also run in distributed mode using Google Cloud Dataflow and other Apache Beam runners.

Apache Arrow is also required. TFDV uses Arrow to represent data internally in order to make use of vectorized numpy functions.

Compatible versions

The following table shows the package versions that are compatible with each other. This is determined by our testing framework, but other untested combinations may also work.

tensorflow-data-validation apache-beam[gcp] pyarrow tensorflow tensorflow-metadata tensorflow-transform tfx-bsl
GitHub master 2.40.0 6.0.0 nightly (1.x/2.x) 1.11.0 n/a 1.11.0
1.11.0 2.40.0 6.0.0 1.15 / 2.10 1.11.0 n/a 1.11.0
1.10.0 2.40.0 6.0.0 1.15 / 2.9 1.10.0 n/a 1.10.1
1.9.0 2.38.0 5.0.0 1.15 / 2.9 1.9.0 n/a 1.9.0
1.8.0 2.38.0 5.0.0 1.15 / 2.8 1.8.0 n/a 1.8.0
1.7.0 2.36.0 5.0.0 1.15 / 2.8 1.7.0 n/a 1.7.0
1.6.0 2.35.0 5.0.0 1.15 / 2.7 1.6.0 n/a 1.6.0
1.5.0 2.34.0 5.0.0 1.15 / 2.7 1.5.0 n/a 1.5.0
1.4.0 2.32.0 4.0.1 1.15 / 2.6 1.4.0 n/a 1.4.0
1.3.0 2.32.0 2.0.0 1.15 / 2.6 1.2.0 n/a 1.3.0
1.2.0 2.31.0 2.0.0 1.15 / 2.5 1.2.0 n/a 1.2.0
1.1.1 2.29.0 2.0.0 1.15 / 2.5 1.1.0 n/a 1.1.1
1.1.0 2.29.0 2.0.0 1.15 / 2.5 1.1.0 n/a 1.1.0
1.0.0 2.29.0 2.0.0 1.15 / 2.5 1.0.0 n/a 1.0.0
0.30.0 2.28.0 2.0.0 1.15 / 2.4 0.30.0 n/a 0.30.0
0.29.0 2.28.0 2.0.0 1.15 / 2.4 0.29.0 n/a 0.29.0
0.28.0 2.28.0 2.0.0 1.15 / 2.4 0.28.0 n/a 0.28.1
0.27.0 2.27.0 2.0.0 1.15 / 2.4 0.27.0 n/a 0.27.0
0.26.1 2.28.0 0.17.0 1.15 / 2.3 0.26.0 0.26.0 0.26.0
0.26.0 2.25.0 0.17.0 1.15 / 2.3 0.26.0 0.26.0 0.26.0
0.25.0 2.25.0 0.17.0 1.15 / 2.3 0.25.0 0.25.0 0.25.0
0.24.1 2.24.0 0.17.0 1.15 / 2.3 0.24.0 0.24.1 0.24.1
0.24.0 2.23.0 0.17.0 1.15 / 2.3 0.24.0 0.24.0 0.24.0
0.23.1 2.24.0 0.17.0 1.15 / 2.3 0.23.0 0.23.0 0.23.0
0.23.0 2.23.0 0.17.0 1.15 / 2.3 0.23.0 0.23.0 0.23.0
0.22.2 2.20.0 0.16.0 1.15 / 2.2 0.22.0 0.22.0 0.22.1
0.22.1 2.20.0 0.16.0 1.15 / 2.2 0.22.0 0.22.0 0.22.1
0.22.0 2.20.0 0.16.0 1.15 / 2.2 0.22.0 0.22.0 0.22.0
0.21.5 2.17.0 0.15.0 1.15 / 2.1 0.21.0 0.21.1 0.21.3
0.21.4 2.17.0 0.15.0 1.15 / 2.1 0.21.0 0.21.1 0.21.3
0.21.2 2.17.0 0.15.0 1.15 / 2.1 0.21.0 0.21.0 0.21.0
0.21.1 2.17.0 0.15.0 1.15 / 2.1 0.21.0 0.21.0 0.21.0
0.21.0 2.17.0 0.15.0 1.15 / 2.1 0.21.0 0.21.0 0.21.0
0.15.0 2.16.0 0.14.0 1.15 / 2.0 0.15.0 0.15.0 0.15.0
0.14.1 2.14.0 0.14.0 1.14 0.14.0 0.14.0 n/a
0.14.0 2.14.0 0.14.0 1.14 0.14.0 0.14.0 n/a
0.13.1 2.11.0 n/a 1.13 0.12.1 0.13.0 n/a
0.13.0 2.11.0 n/a 1.13 0.12.1 0.13.0 n/a
0.12.0 2.10.0 n/a 1.12 0.12.1 0.12.0 n/a
0.11.0 2.8.0 n/a 1.11 0.9.0 0.11.0 n/a
0.9.0 2.6.0 n/a 1.9 n/a n/a n/a

Questions

Please direct any questions about working with TF Data Validation to Stack Overflow using the tensorflow-data-validation tag.

Links

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_data_validation-1.11.0-cp39-cp39-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_data_validation-1.11.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (18.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

tensorflow_data_validation-1.11.0-cp39-cp39-macosx_10_14_x86_64.whl (19.2 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_data_validation-1.11.0-cp38-cp38-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_data_validation-1.11.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (18.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tensorflow_data_validation-1.11.0-cp38-cp38-macosx_10_9_x86_64.whl (19.2 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

tensorflow_data_validation-1.11.0-cp37-cp37m-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_data_validation-1.11.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (18.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tensorflow_data_validation-1.11.0-cp37-cp37m-macosx_10_9_x86_64.whl (19.2 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file tensorflow_data_validation-1.11.0-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_data_validation-1.11.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 63a6cab3a8387b413b231da5807da47b7207a64defaf489bb5d1835c350ec52f
MD5 23c1c82906e50888a8514350fc05d5c0
BLAKE2b-256 a2d9e036e36c39bddc7e097b7f17ab1b9b291da7c8419d469acc5d91af21d1fc

See more details on using hashes here.

Provenance

File details

Details for the file tensorflow_data_validation-1.11.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_data_validation-1.11.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 f25264a6de867646d1b4995e37c4e24bcbe09155ff9326472e3e67f5ac1e67cb
MD5 f181ca637bd89d34914e6b6e1b54f13b
BLAKE2b-256 5d2fd92cf30b64c8e0c6799d525a5cb3d049826b4cf14d2c3d046af7af3f7f57

See more details on using hashes here.

Provenance

File details

Details for the file tensorflow_data_validation-1.11.0-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_data_validation-1.11.0-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 1194a1ed04b90b3b54325bd19bec841fe014c30aca2c2e16e06c7e859d30dc20
MD5 73a8db8b16b0fb78bb9aa546d33f29d0
BLAKE2b-256 50cfc1df3350f61a272c50bfa57dfb461623e1812c8464ec8159010404c87d45

See more details on using hashes here.

Provenance

File details

Details for the file tensorflow_data_validation-1.11.0-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_data_validation-1.11.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 ee6388053cd8e99a4d8c30d3f4180906cee6419250f87eb2f1ef30c7f5f4809e
MD5 813727264cb460966352f496b8ce30b2
BLAKE2b-256 6b7e11e264d7ad8405aad1d8889fb2d8a905c76665844d73e8dec54b58f46c89

See more details on using hashes here.

Provenance

File details

Details for the file tensorflow_data_validation-1.11.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_data_validation-1.11.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 50b1f55685ab3826a4cc09142be51e7d9f3bb35c7487eaa10dd95c2304493c41
MD5 933f5590fe3f6fd35b5d5b8fd810dc39
BLAKE2b-256 31feb95b1056a3e336cf51d6c61b74f93f20e7beb83bc8b920da0e9d752c0310

See more details on using hashes here.

Provenance

File details

Details for the file tensorflow_data_validation-1.11.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_data_validation-1.11.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4cf8091b05363ab9fecebb30db1b6bdfccba22ab85af54f02136acc25c53e41a
MD5 4f3ee2a1b95655bf1166de2333e9b393
BLAKE2b-256 362267691c8d86b196265332a21b4413fedc21ad70e98e0a8a8ae71f7eb59a82

See more details on using hashes here.

Provenance

File details

Details for the file tensorflow_data_validation-1.11.0-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_data_validation-1.11.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 130815c2813071d4e3abc2333ce4b6a9ee3ead22853cda22635d11804765ed84
MD5 8dbe62d6c7f045f2d3d25019e35441a1
BLAKE2b-256 267fcac5e2ade585700ecbf2512a84849310d553e2a6d9ecd452f03a81b6ccee

See more details on using hashes here.

Provenance

File details

Details for the file tensorflow_data_validation-1.11.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_data_validation-1.11.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 c0af7718144e312b6baeee48579e1f171e417b7733d49c49d8fdadbe139fd356
MD5 c7524e4a9e85fd1377301ae01889249b
BLAKE2b-256 0c33f0b7a5661dd0054b861aecb5d01465d8e6bbc784da4ceb97a23e0809c709

See more details on using hashes here.

Provenance

File details

Details for the file tensorflow_data_validation-1.11.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_data_validation-1.11.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c8fff4b88d850173b18dbacb7ef294abb7cfffb3e115b8e525d28b09df8e6ad3
MD5 c343d88a85ddc04a19518daccf3b5677
BLAKE2b-256 d8212a6d23ea9e0a6a0bb16967829e6b84a96d7ca9e0c7bae5cc31ff9f575cb6

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page