Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_gcs_filesystem-0.18.0-cp39-cp39-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_gcs_filesystem-0.18.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

tensorflow_io_gcs_filesystem-0.18.0-cp39-cp39-macosx_10_14_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_gcs_filesystem-0.18.0-cp38-cp38-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_gcs_filesystem-0.18.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tensorflow_io_gcs_filesystem-0.18.0-cp38-cp38-macosx_10_14_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_gcs_filesystem-0.18.0-cp37-cp37m-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_gcs_filesystem-0.18.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tensorflow_io_gcs_filesystem-0.18.0-cp37-cp37m-macosx_10_14_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

tensorflow_io_gcs_filesystem-0.18.0-cp36-cp36m-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.6m Windows x86-64

tensorflow_io_gcs_filesystem-0.18.0-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

tensorflow_io_gcs_filesystem-0.18.0-cp36-cp36m-macosx_10_14_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_gcs_filesystem-0.18.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: tensorflow_io_gcs_filesystem-0.18.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.8.2

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.18.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 02585355cfeff116131f3244002351df12582c22f9352c966a7de2f069c9a047
MD5 299e2ee3ce2c6af8c4e62e322985d295
BLAKE2b-256 e736de36081010aee3a0fb4b849fa71ac32fd2cd0b878126ff9888846f6811f9

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.18.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.18.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 502e39b1a4f8f6d0a4a297957aca9f5b8812d9be4c99ad26a1efec5d8e7491b9
MD5 f2c16c54cf6d8e9216fdd3e9742691fc
BLAKE2b-256 c494bc4386074b94c53b9a14450dd025d743f86a0339e3c6340d2df08902b69d

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.18.0-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.18.0-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 561ad54ce5800c605dbf8d43262f18e1e17a016d78d3734a0609ac6dbb3fefff
MD5 af8dbe4b231207978220aaa594991ce0
BLAKE2b-256 ed369b103bd2a2f5587dbdc34d921fff8853fc081bde87e99faac8580b926bb0

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.18.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: tensorflow_io_gcs_filesystem-0.18.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.8.2

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.18.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 4cc0d41c91ec209b8b7f84b3d15f8a39f2d8acbd6148203d7b27e9835ede0a7a
MD5 3268d90b467b7ac25db95edd4b24166e
BLAKE2b-256 5c7dd6e8bd368ddd04b4a60c9e5c82f73babdad1c505f2a13777292e457d2f90

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.18.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.18.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 de39256fc7aad3aa7d0333a3d86f476d76de99070544860bd744b1af65264b39
MD5 028a308142e7f14d49dddf461a2de095
BLAKE2b-256 5b749ae6c173e3d4bc98ddbda0213330909a4e87cd8f3992a9841dc61d29c097

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.18.0-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.18.0-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 280820f19c5c66a20e0122b9430bb54aeea91bd65d46edd3121927e5e8c24341
MD5 30639028c18ace21d2fe9adc5e1eb4b6
BLAKE2b-256 c6a48a2ccb9189a81b24b2e3202eb0c84eca850d5bfc9942ec6fe7745bd12845

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.18.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: tensorflow_io_gcs_filesystem-0.18.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.8.2

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.18.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 a95629e38e0416cb620b7d50de37451535e0e1a0779a8e6608cfabad9e4f6a1c
MD5 c9839bd7b20e36bd95454e90bc4ceacf
BLAKE2b-256 d557c699359edcc5f8042ac71a1f27370ba90e2268336d9ba022ff10a6bb65f6

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.18.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.18.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 3a75210527b0bd0482994325e8832c07d6333d7b76a2bc0cb7a3daaf103436f1
MD5 2493275c83341e58f44869d687fa138c
BLAKE2b-256 27376cedfcc52f1d53a79a60204fc89d1f7ca099c5d3a999d4640a2fe407e91b

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.18.0-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.18.0-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 41403032e3e938992c1591deb305e602fa0c9573e8ad6a578b804e5d59a09676
MD5 c9b8fca343a0bf3388c385eee1a136c4
BLAKE2b-256 f4048f0cf596b9a6b26f23c03e80a38b08788ce17bcb51cd7e5f8ba6bdf0ac74

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.18.0-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: tensorflow_io_gcs_filesystem-0.18.0-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.8.2

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.18.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 81410b0ef5442e3f4890a7c925e0da9b587a8dd7a04cf7c0b28595d804254fa2
MD5 a4f1c1a3498a0c4cb21c166c86f5264f
BLAKE2b-256 481894188a445e9c03f2dc4aece5fa9fbcaa215b3fbfea9ea557bf5d317faf47

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.18.0-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.18.0-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 e6ca48b33a77abb67307b7e3673eb6bec93185ef0c47c3ee6304026c598dfde0
MD5 7cd9149b0c92edb380c637738b975263
BLAKE2b-256 fb7ca866c158cba48ce47d95ab4fe7d1caa717333230014569c429809e32f396

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.18.0-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.18.0-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 04b059474289743c105050a6eafbb958121140e0f26c088aefed553e9e803817
MD5 d8da2adaf8e81814d91132875785b01b
BLAKE2b-256 ec8e51caebaf3086a7430d3c82d11bd80e9e0ab7ae6aa5174d2d1179621ebe4e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page