Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_gcs_filesystem-0.20.0-cp39-cp39-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_gcs_filesystem-0.20.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

tensorflow_io_gcs_filesystem-0.20.0-cp39-cp39-macosx_10_14_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_gcs_filesystem-0.20.0-cp38-cp38-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_gcs_filesystem-0.20.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tensorflow_io_gcs_filesystem-0.20.0-cp38-cp38-macosx_10_14_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_gcs_filesystem-0.20.0-cp37-cp37m-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_gcs_filesystem-0.20.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tensorflow_io_gcs_filesystem-0.20.0-cp37-cp37m-macosx_10_14_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

tensorflow_io_gcs_filesystem-0.20.0-cp36-cp36m-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.6m Windows x86-64

tensorflow_io_gcs_filesystem-0.20.0-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

tensorflow_io_gcs_filesystem-0.20.0-cp36-cp36m-macosx_10_14_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_gcs_filesystem-0.20.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: tensorflow_io_gcs_filesystem-0.20.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.8.10

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.20.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 34b73079d3662cbd94d22f404528be22697cdb39b368db2ad3736da252c74bbe
MD5 f6827f0d475eb44c052c99cbf10d6d9b
BLAKE2b-256 6ac757f2a963216b053b22223469e5eea1a8cefd6f9e99e74c40ded378e062e3

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.20.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.20.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 1418242ccb91576b3dacfb1c095acfb00198118cbf9b8ca85e071645efe1d3c7
MD5 e3051c3a8ed365e0b7e0117b43eaf8d4
BLAKE2b-256 bcf5ced82c276cb4a8a3c6a3405e5877c58c07e25a5014b9124fcdf1b49975a8

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.20.0-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.20.0-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 5ad6aef7d3935f8c8fb00785132212e9f150f106a9d83d934edd624e2030d0e3
MD5 4b130f41896f59b602bfc454d8935e27
BLAKE2b-256 0e31b514c085ac0032fda70dd567ed3303b2d8aca92df3992d319f1ce73e2264

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.20.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: tensorflow_io_gcs_filesystem-0.20.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.8.10

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.20.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 c0abf12f2add517ff48e55bd9bf41f52496a68a241cfb90bdd2c6a9aa722e56e
MD5 3869da05b2f5467bfc78315f125fc93e
BLAKE2b-256 60226865f474feefb5b8c43eea3cc0b1ea660658b640a56bb8eb2e57b2db40d1

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.20.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.20.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 574e4e91ebd110ba05b5cd7c1f07342e36e7ba08a8e46b8084584a689f0b55fb
MD5 8bf02bbc9a27f445b2fee365b59cc702
BLAKE2b-256 7ef4a819dd018f192c65eef5160f905808e85238dffe39c40ed5e30f92420dcb

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.20.0-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.20.0-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 cece0fd14fe36edf6975c0b32f969459476b3e2e7b0c60116ced3e427dbcdfef
MD5 c795c689d5f0c0e7f5f0e6590ca9a58b
BLAKE2b-256 0ff89e563d1d3e852b74d929eafced87a82e556d6570041a0c330aa7251fc253

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.20.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: tensorflow_io_gcs_filesystem-0.20.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.8.10

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.20.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 ea3feee29705b2792c2a8e9ce3a734a39aa387c55728d31ad1e8d8e78bdaf59a
MD5 30aa22dea97a0d92c9f24bb5364effc0
BLAKE2b-256 1e1de0307d83fbf4f6fc87f4fb7ef00d34e74b99a769dbaadfc74797e2ee947a

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.20.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.20.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 bf0243d090feef92b8f2eba565c0e48be88220d7989e304cb548c57ced899e3d
MD5 1c77132360bc559f756eaff465b78134
BLAKE2b-256 2caee820c05d1a9ccf3ac3aad497c50092beb9560920a0b6f597d7b6eb9a24e5

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.20.0-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.20.0-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 a1fc519bf4277a120c23bcf3ebc7e8709540c9c3e2187165158ad28964c924ca
MD5 c5f95d74dd6fa0c1fa05226de6da5f16
BLAKE2b-256 4ee7cd72867495e80be9e5a34930eabbb68d22a581c192f253f8ff54ddbe7ba1

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.20.0-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: tensorflow_io_gcs_filesystem-0.20.0-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.8.10

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.20.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 e0525991b17cc581266e0c34f25e3703c66edf492b802863ce02822cc54b437d
MD5 b8f3c469996995847b88982fa15a88bd
BLAKE2b-256 03d0aeda9a7e5d741deb53ffc4706d959ee8c8846e5f6c9ee376a13760199a92

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.20.0-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.20.0-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 e662e25bed26e6eae9d2f3bdd20572678d9025386a05593532200e4f76e7cd66
MD5 d9a8849342975bc963b8142e106838b4
BLAKE2b-256 03098e0a3f6b40f6cd12a5d83f1959ecf29d149f267969cb33232521e3dbb625

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.20.0-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.20.0-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 cf5c864b2ebe7a00168ca334553d6e9d51019ccf10bed49e27c5c3c65d1f12db
MD5 ef3523ae2c5eb5a0949d29b1cefd4405
BLAKE2b-256 a8e7914adfcf56c184923a2add0cd3470389eddc4090bf0e09405b98d715a5d7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page