Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.21.0 2.6.x Sep 12, 2021
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_gcs_filesystem-0.21.0-cp39-cp39-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_gcs_filesystem-0.21.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

tensorflow_io_gcs_filesystem-0.21.0-cp39-cp39-macosx_10_14_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_gcs_filesystem-0.21.0-cp38-cp38-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_gcs_filesystem-0.21.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tensorflow_io_gcs_filesystem-0.21.0-cp38-cp38-macosx_10_14_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_gcs_filesystem-0.21.0-cp37-cp37m-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_gcs_filesystem-0.21.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tensorflow_io_gcs_filesystem-0.21.0-cp37-cp37m-macosx_10_14_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

tensorflow_io_gcs_filesystem-0.21.0-cp36-cp36m-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.6m Windows x86-64

tensorflow_io_gcs_filesystem-0.21.0-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

tensorflow_io_gcs_filesystem-0.21.0-cp36-cp36m-macosx_10_14_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_gcs_filesystem-0.21.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: tensorflow_io_gcs_filesystem-0.21.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.8.10

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.21.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 8c95c0ef2de4611a528ef210c233481dd7628c57ff3ef7f08c0f9708125d3ff8
MD5 ef0c02d8f0a68186ea3882fb23a20b16
BLAKE2b-256 1f5778ee377d30f4936e955a3bc27519b9d691cca752510ec17e810777d319a2

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.21.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.21.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 603f73d61670954833b6ed87199a4a919e2a5dc015f34b20fdd235a611f37e81
MD5 d6d01638979c5de9a5e34e22c1ae51c7
BLAKE2b-256 9b1a1fd11503c77a0c1417484456ca327488a7df3c0fa89a2877acaeb314becc

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.21.0-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.21.0-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 020581f962e7156054c790d649ecc80518d7874e0def5b2f58f965a1998d45e3
MD5 a05ee62600c80a2054bfb59dc3ec3ce4
BLAKE2b-256 9b495a142fdcdef65c5df33b07e3c834cf8f11bf29b8fd7f4b7eed8a2100d5a5

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.21.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: tensorflow_io_gcs_filesystem-0.21.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.8.10

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.21.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 e447d9c03dd7396292ba10dd39a3c6a2cfcb9332b67457592119c5e5d3e38cfe
MD5 3d28e98cd60695f3f4008c4f3925cf15
BLAKE2b-256 dba0e0176ad1cf16c9454f10f75821390cdb985c59b1741ef90f7c7d9792d811

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.21.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.21.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 b12f9d66c8433bb4a67d9cc6cdb14cf11c42d9fe65bdbe09128b6579a80f80e8
MD5 c4319701561abde454123ab0be1bb518
BLAKE2b-256 697c38ac4bafea000c5aed43c5ca986ef77a2f7d0c7837463eb043cd565add82

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.21.0-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.21.0-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 95555c647c8330daf712a38d2b158f7a21d5ad77e8fd438360060b37cb8ca1fb
MD5 ed619dc3c164cb6eb4e909cda3755596
BLAKE2b-256 8b2e334609eafe6a3c0584045dc8cdfdd0e300f11e2140f23a1e41a81ebad2b2

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.21.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: tensorflow_io_gcs_filesystem-0.21.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.8.10

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.21.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 e22fcc4e6e924842fefc570f7fd0f6fd33e458154be8891b5a7bfd8380c6aa8c
MD5 b27d8112ef8ba00ba7d0938184e2020e
BLAKE2b-256 461d3c40d44176ac5a0f4dc6d71bb0c81777087eb944fe0fe7d562fa4b29921b

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.21.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.21.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 7c54f1f334076a5514b9f7f537afe4c36fce4233f792ce6ada76651bfad9f2eb
MD5 f5d1aaf188d8a8b35510c27c24c5868c
BLAKE2b-256 7f8922984ef36a4797fa3bf9660dd45bc841a6e3d8f7a0cdacaa62617cd54a90

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.21.0-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.21.0-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 c28ca0dd37d1bb2110a62e9e7f7b0bbdf295add83b38fbe507082fd89f0ebc61
MD5 980fb836426503c04bf37ff4e5d984d3
BLAKE2b-256 f7bdca8b3373b3c750ae63d771481088a915c743916aba3ef76c1ca3043614fb

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.21.0-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: tensorflow_io_gcs_filesystem-0.21.0-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.8.10

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.21.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 8fc48d4a6f06a97b8a866d849844189ecd1d830de9b152276ea579d9772c0533
MD5 2cf6c95a45b37d9a39b9deb0fb8519a9
BLAKE2b-256 0f437554d94e9c6d9281ee36387430ae6063d944daf7ad0d8c46404d3feddc23

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.21.0-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.21.0-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 d5ce0de3c91fb3a47bd91e25081bcd3b3491d515ee45e6d2c63e899ab5e7739e
MD5 3e29262d936aaa4df52ebb99b8a4d2e0
BLAKE2b-256 0cd1e17db73bc9788b21888db4dae42f43bb9205fcf4ce010764840b655c0ba2

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.21.0-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.21.0-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 db8659cce2b45a6689cf041c7745b60338d8158fc394627f916029980aa04e0d
MD5 d76393c38d6f1d56593417295d3983e4
BLAKE2b-256 ccb392c89523afeaaf8956e6bc42f9155e6f9e047d2f68f6f122bfa07d5bb9ed

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page