Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

To ensure you have a version of TensorFlow that is compatible with TensorFlow-IO, you can specify the tensorflow extra requirement during install:

pip install tensorflow-io[tensorflow]

Similar extras exist for the tensorflow-gpu, tensorflow-cpu and tensorflow-rocm packages.

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.23.0 2.7.x Dec 14, 2021
0.22.0 2.7.x Nov 10, 2021
0.21.0 2.6.x Sep 12, 2021
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_gcs_filesystem-0.23.0-cp310-cp310-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.10 Windows x86-64

tensorflow_io_gcs_filesystem-0.23.0-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ x86-64

tensorflow_io_gcs_filesystem-0.23.0-cp310-cp310-macosx_10_14_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

tensorflow_io_gcs_filesystem-0.23.0-cp39-cp39-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_gcs_filesystem-0.23.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

tensorflow_io_gcs_filesystem-0.23.0-cp39-cp39-macosx_10_14_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_gcs_filesystem-0.23.0-cp38-cp38-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_gcs_filesystem-0.23.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tensorflow_io_gcs_filesystem-0.23.0-cp38-cp38-macosx_10_14_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_gcs_filesystem-0.23.0-cp37-cp37m-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_gcs_filesystem-0.23.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tensorflow_io_gcs_filesystem-0.23.0-cp37-cp37m-macosx_10_14_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_gcs_filesystem-0.23.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: tensorflow_io_gcs_filesystem-0.23.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.23.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 80fbeef1d9bf40e4a381f8eb7dc5b63340a6a87d0d04bc990fabf125eb685678
MD5 0cbcab1664feb9554f585b48355685a4
BLAKE2b-256 e17c325c4d4110e311a630ecc79247c75ea1f770e7060100d9086a25e79d56fa

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.23.0-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.23.0-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 bc0a3d6a1dc9808d5e9cbfb78357c74272ad56c7f0891086b27b5a8e2586980e
MD5 06c8334b95930ee5b608223a584dfc71
BLAKE2b-256 0f71e87514297b7c655b52d2c20cc02827ee4f1603f5dccc771903722c7563e8

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.23.0-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.23.0-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 b05006845cd4d3ee01cc6aa3f2be656bb7c70b84765c039d99f36705db409ac7
MD5 48624bd6f4f2997b0a8c6cdb07607eef
BLAKE2b-256 b5227a533cce1590f3ce9abb1ad74fab651091f56d2b890bacb7174504984e7a

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.23.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: tensorflow_io_gcs_filesystem-0.23.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.23.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 d27b864a33fd32ffeb50bf66b15e94673c02406dae693528c8cbb3279327c991
MD5 df65cf9b0f541a7f798edbdc99cd7a02
BLAKE2b-256 13f50c9f832d78fe063926440fcd14aebd13bfc3e1ebbbb0b5b63400c1c34b58

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.23.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.23.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 5c78d35d312d87f604bfb7c009904515d6204ae5758a3a90c8b0da9a0c9420e3
MD5 265d8add0954141bb956f5ab907c55eb
BLAKE2b-256 40918c1f022f4e662bfed559a92f1557244b95dd0b64f8bd4baad9b031d77d89

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.23.0-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.23.0-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 c2a45e43b76ced5c98bc4ce4661b96d5a8cf725c4e62e38aba10a7420290136d
MD5 01e90757c2dddb4ccb6b257aff07d4b4
BLAKE2b-256 26c00f676e37db98a79dcc90d1c0891f1f41613e131bffa2f67d047a30b771ae

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.23.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: tensorflow_io_gcs_filesystem-0.23.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.23.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 fce6ce2f9869a87ae627b3a1293930857ba4f57fc78794cb0d4770ca5208fe45
MD5 67070b4c16f34f3f2488e2a07d6efeb6
BLAKE2b-256 1c044b2063146bba1fb9c7d931afdc151bbf7beacc553aeb53f91c58825bf684

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.23.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.23.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 dc2f9f8155f539e7c79e0e9af210483d21219491c3ed3a74870892ebcf86bc21
MD5 8090593d5f5f351ec91a5e54aaec997e
BLAKE2b-256 884b9ef246cadbbf914c72d6e72637e1f7de50baaf803d09e45f5162d8812854

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.23.0-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.23.0-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 63de0128b4a8393aadee1c1dce2775c5689a6861d575f730f9f9ded236d0bce1
MD5 282e362566902a6744a20b464286e7ab
BLAKE2b-256 0f8d0195faf6abe8a8290ed0a7877850d7093ae963531809fefd852ea0b7a309

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.23.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: tensorflow_io_gcs_filesystem-0.23.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.23.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 bb4d9091f15ab91c0c882b7956def2aff1b670fb463b995170ef0865e7840be9
MD5 150a26c0354cbe5a4c7dd1d9d5e28819
BLAKE2b-256 bc0289876ddd332f2d787ff4024262efe6b260f8891f5401a2c029294428890e

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.23.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.23.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 a10446cf94a48e183345e04a9bfa6b6c7a33c5281922a2f55c16ca7256f60244
MD5 ecbfbbac422d9cc1e5a5841ea8dec831
BLAKE2b-256 e4b3135dbb11202c21c48df505a4af68692e909d2428e2d492a83b045e7d659b

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.23.0-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.23.0-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 c15baad52e072f2771af38f39f364fc1ee634048fd8161f84874d0b66d5201fd
MD5 199d822fae70e9a56dad914b91f7609e
BLAKE2b-256 b33d41474bcec76c1bd9917f908e680afb1cb393def20635908b9aa0ebfa7ba9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page