Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

To ensure you have a version of TensorFlow that is compatible with TensorFlow-IO, you can specify the tensorflow extra requirement during install:

pip install tensorflow-io[tensorflow]

Similar extras exist for the tensorflow-gpu, tensorflow-cpu and tensorflow-rocm packages.

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.23.1 2.7.x Dec 15, 2021
0.23.0 2.7.x Dec 14, 2021
0.22.0 2.7.x Nov 10, 2021
0.21.0 2.6.x Sep 12, 2021
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_gcs_filesystem-0.23.1-cp310-cp310-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.10 Windows x86-64

tensorflow_io_gcs_filesystem-0.23.1-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ x86-64

tensorflow_io_gcs_filesystem-0.23.1-cp310-cp310-macosx_10_14_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

tensorflow_io_gcs_filesystem-0.23.1-cp39-cp39-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_gcs_filesystem-0.23.1-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

tensorflow_io_gcs_filesystem-0.23.1-cp39-cp39-macosx_10_14_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_gcs_filesystem-0.23.1-cp38-cp38-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_gcs_filesystem-0.23.1-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tensorflow_io_gcs_filesystem-0.23.1-cp38-cp38-macosx_10_14_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_gcs_filesystem-0.23.1-cp37-cp37m-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_gcs_filesystem-0.23.1-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tensorflow_io_gcs_filesystem-0.23.1-cp37-cp37m-macosx_10_14_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_gcs_filesystem-0.23.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: tensorflow_io_gcs_filesystem-0.23.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.23.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 5e3f87cb4d1d744ca7d474f801fadd2679f5b1b5b4ba2dccc2beba8a853fbec6
MD5 bb128beb9be298092cf6e7b06e688e22
BLAKE2b-256 2fdea48c5f6fe9abb733228142574f9f430d524b3409e2f8ec08d8bd3554d827

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.23.1-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.23.1-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 378b2219fd9a26ad4e92f70192cdb7cc5e12d07b206c2fd9937e92e5c876003a
MD5 f75ea54248d762be0524a64fccb66e6f
BLAKE2b-256 cc5ce3d3e4713ac4b8d5de82154acf00501a99b7c84625f4bfe09e998c8b02a8

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.23.1-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.23.1-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 80e2078b94ba5f140b5d366ee3b07b493760d2c76d7426ec417f7be2795a0799
MD5 8f4d16eed52a0d806813a9e6bb96cbdf
BLAKE2b-256 dcf53bfb42c60a80540a20a9305b847a685a73d8efa23972fab0a8aa2217b875

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.23.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: tensorflow_io_gcs_filesystem-0.23.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.23.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 15d9a8e86355fcc1fc6fd06a8ee2fcb89431dafbb9e3560dfd9a35443b22c6fc
MD5 bfc28f1d4e9a88c234fe02dc4fefb087
BLAKE2b-256 5ce82f24a107a951cb5f36b9ea4c97b3f5cd4ba942ea38ea4e7380915d8a8280

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.23.1-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.23.1-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 7940b90faf633e4bb27dd1579a7a55dfb56921c879c867c732a0c0c96f29542b
MD5 e8eca1f81f5f635caf04c0700fab00cd
BLAKE2b-256 a8e45ee9ba5863bf6c4c7079ef588f4784a66224ec3ad2bd6a0546da85254f37

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.23.1-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.23.1-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 fe0f375a1806f99ad9f0315d157732cb073105b9022c1fd6f39b7e0cbf43e927
MD5 70bf4cf3b58cafee06ccba574b933e04
BLAKE2b-256 d9e2170279c12d5991bd589b0bfa0e6e43dcc08871484b5392f72e1a26b574cb

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.23.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: tensorflow_io_gcs_filesystem-0.23.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.23.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 daa8d999e397b2ca9167074cdfaaf0c0226b5a66b7788b4153a62f597028e44d
MD5 c345870ef5c2bb9991efb3cd71a7af81
BLAKE2b-256 1e988c1b2c5d08187ce9b88ecd2a3bf3d3a8aa73c6f23368868a666859efa9fc

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.23.1-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.23.1-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 4f04896024205b3c945249c1ad7a3d1681155a09107ad5a67f88724dc6a1a57d
MD5 f435780f10f7c55f4761610c9d9c5243
BLAKE2b-256 36a98d99715e68b8e8b1a70f6f6525d9efeddecb9ca9f6367ab7c7c6d886d647

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.23.1-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.23.1-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 deeedd36b7779445e6806f3c13302de4acc3a26b42e0c0a2464e38b1f722d71a
MD5 979d1d48b961952c11a2df79f285c168
BLAKE2b-256 98f59ff1a7a5678895a5a7c5e70a0a69b875bab226a1a88df29756a6a4145ed4

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.23.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: tensorflow_io_gcs_filesystem-0.23.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.23.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 5dea85fa7814cac81f46bc9c2f635d25e01c7657129770ee720562a2f54fb1c0
MD5 114f8a8d916588e3f6b98fa91101103a
BLAKE2b-256 53a252d945cd29c90fd1284c32233b67e4ce72d9cb70f73b2b7e3d19ec703433

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.23.1-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.23.1-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 650cb4ca2637345f3b75e4252f1db2f64f4fd4d15f1359ab76b9e34ad39e92fd
MD5 480eb6f6d6fb32c357386048e17aaf90
BLAKE2b-256 83d6edf9becbf95986ba507e94609135ab27bfe899909bd661f1130498362df8

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.23.1-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.23.1-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 f3262a24bcc15ee7febc2c85b699e98c44dffaa4d03113dfd56d29472d07879b
MD5 22cfa1bc857d712c07d09879ecf789a8
BLAKE2b-256 ea54a3bce1da9d52def4eb4027986a93927e847f2efc432fffe76b9ab85c1e51

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page