Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

To ensure you have a version of TensorFlow that is compatible with TensorFlow-IO, you can specify the tensorflow extra requirement during install:

pip install tensorflow-io[tensorflow]

Similar extras exist for the tensorflow-gpu, tensorflow-cpu and tensorflow-rocm packages.

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.24.0 2.8.x Feb 04, 2022
0.23.1 2.7.x Dec 15, 2021
0.23.0 2.7.x Dec 14, 2021
0.22.0 2.7.x Nov 10, 2021
0.21.0 2.6.x Sep 12, 2021
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_gcs_filesystem-0.24.0-cp310-cp310-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.10 Windows x86-64

tensorflow_io_gcs_filesystem-0.24.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

tensorflow_io_gcs_filesystem-0.24.0-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ x86-64

tensorflow_io_gcs_filesystem-0.24.0-cp310-cp310-macosx_10_14_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

tensorflow_io_gcs_filesystem-0.24.0-cp39-cp39-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_gcs_filesystem-0.24.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

tensorflow_io_gcs_filesystem-0.24.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

tensorflow_io_gcs_filesystem-0.24.0-cp39-cp39-macosx_10_14_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_gcs_filesystem-0.24.0-cp38-cp38-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_gcs_filesystem-0.24.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

tensorflow_io_gcs_filesystem-0.24.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tensorflow_io_gcs_filesystem-0.24.0-cp38-cp38-macosx_10_14_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_gcs_filesystem-0.24.0-cp37-cp37m-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_gcs_filesystem-0.24.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

tensorflow_io_gcs_filesystem-0.24.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tensorflow_io_gcs_filesystem-0.24.0-cp37-cp37m-macosx_10_14_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_gcs_filesystem-0.24.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: tensorflow_io_gcs_filesystem-0.24.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.22.0 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/18.0.1 rfc3986/2.0.0 colorama/0.4.3 CPython/3.10.0rc1

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.24.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 2f67d19a2f2579dc55f1590faf48c2e882cabb860992b5a9c7edb0ed8b3eb187
MD5 b8051e880fa2fd29390f9d57e60684ca
BLAKE2b-256 c3649f3c29bac8b71c6df3f24a901dfef04e5cdf3bd74d0923dcaea14011651e

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.24.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.24.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2a9c7f26ef9248bdfccc91fdddd66623754a6b08bd4440a780f23feaed8c5be7
MD5 297b7930106ae1294347e9c3b2ec1fc3
BLAKE2b-256 2b0d84356ab98c9f05a9abdcfb5ea07fa4ed1148ea0e9d78080161a17c6e776c

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.24.0-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.24.0-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 b6ca3a9f751aa9c2f9851520e666d905ad14667281bbafeabe611b7b8f3e1bc5
MD5 4720bf05c9cfa4a0d6eda18c6e4a21ee
BLAKE2b-256 21b8f769bf8ee81e7d9df74b4d805da38fd64e8d35d5d94e81bb75c2254e82ea

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.24.0-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io_gcs_filesystem-0.24.0-cp310-cp310-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.10, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.22.0 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/18.0.1 rfc3986/2.0.0 colorama/0.4.3 CPython/3.10.0rc1

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.24.0-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 9c00f9a9880477b1dff0c71ee6734421ce99ac484ca2151793ebf2681fc0cb4c
MD5 f34a5a8e93057c734f1faecdf2cf6a8a
BLAKE2b-256 873cb8d83dad7d0811723a7ddb15feb6a3bd70d397b41a57a25ff0fb3110db8a

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.24.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: tensorflow_io_gcs_filesystem-0.24.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.22.0 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/18.0.1 rfc3986/2.0.0 colorama/0.4.3 CPython/3.10.0rc1

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.24.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 2862e0869453ce1f872a28d1362768ee078ec227ea587dd69164081dea6d7177
MD5 f3e04dd6712d1dc6d2f2b0c159aeb18f
BLAKE2b-256 c674179375d2fdc00de015f0f8e622a16fcd2856e5536636a343c1c364138315

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.24.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.24.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ae96b20b973b1c3bbf2c068409035ead45177447ef51701f4e726f67cadc4695
MD5 cd4d5bd72979fc9d97413735d3defed0
BLAKE2b-256 afaa7d3f6e3c34ef7fe0cf0c0860e5ecb19faf77cf7acfc5f7350e48563f5c15

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.24.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.24.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 cbc71b3925508bf796644a0083a6f9284f71404654f53092bece701383a69520
MD5 9c7cbd7683a808e87f1d515e7a667283
BLAKE2b-256 0d4a63a2999cd3233d3ebdce5587262281464d18b0fa7cffbd73a4983ccaa411

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.24.0-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io_gcs_filesystem-0.24.0-cp39-cp39-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.9, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.22.0 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/18.0.1 rfc3986/2.0.0 colorama/0.4.3 CPython/3.10.0rc1

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.24.0-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 825f396388748038ad38c35b091311982081f93a5db8ca9763fc874c3f555e6c
MD5 3b37f141437263ad6d0cbc43ac8b5ba0
BLAKE2b-256 799fc74c4710cd696b35e625e278c34d96c60cc4eaa466fc7679c7d09e8dfa41

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.24.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: tensorflow_io_gcs_filesystem-0.24.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.22.0 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/18.0.1 rfc3986/2.0.0 colorama/0.4.3 CPython/3.10.0rc1

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.24.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 aa90b9a34ea8da4dbd534f77746d67375714db869524da889193c3042352679a
MD5 9ac7a60c3170410e0f221cb924c55ffd
BLAKE2b-256 2a28009673d50d6dd45737ca095035521f2b89d1b703d0e4d6bf7e4c292917c5

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.24.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.24.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 658764aaaf9419ddefb3daa95bdc84e5210c691ff73b8ac2606d5c839040206b
MD5 829db64f5de53140c1f74779d8b274da
BLAKE2b-256 9f58c29b1f2cd8f8e92e5bb2105d370d325baa8dea22b21fa5420152041e6a48

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.24.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.24.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 6e65009770a05a3b55c5f782348f785e5034d277a727832811ad737bd857c8c9
MD5 277b23bcfb170d99f2656dfa60c27883
BLAKE2b-256 d313825a225725a9d0f1cf7ac04df32a4b6daef4e71add61bf2e22b2680a371b

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.24.0-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io_gcs_filesystem-0.24.0-cp38-cp38-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.8, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.22.0 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/18.0.1 rfc3986/2.0.0 colorama/0.4.3 CPython/3.10.0rc1

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.24.0-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 cc093f160f79526d31f6070a3ddc000868d737a36ccf40984128661563383601
MD5 f5f30b088e7b6cac2c8bb45b73c9261f
BLAKE2b-256 b665a387fc7492805fe90a6f2b7f2f4748697f92d483c44340189c6458a55cda

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.24.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: tensorflow_io_gcs_filesystem-0.24.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.22.0 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/18.0.1 rfc3986/2.0.0 colorama/0.4.3 CPython/3.10.0rc1

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.24.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 d1eb5e9be62040c5a249ae8adaae7e61f65b59541139e4d6767157f25a224bf5
MD5 e289200c1009a1435fd70288a638720a
BLAKE2b-256 da4ebf276e4dd76c6db2bd8d0e1e0e37f904042fb29269abe375726cf579d4c0

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.24.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.24.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f63d70d7fce10c63f21bdd8e72244958afc0c495966831a547f038543c9633f7
MD5 7e68eb7cea608d014155196cad350533
BLAKE2b-256 6cc7b0350b346f86a8eb6d60bcda998682b6ef5d529e91dcd28d290cd3a939f1

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.24.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.24.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 71c00638c9b6048480095f2738dfefd8f4b2e7b534190c91d699aee769bfa86e
MD5 05830515dfc7447e1bbf152fd38f034e
BLAKE2b-256 0806f114bb3fc0f9c73640cb00fa2f2e33ca66df9d14d37c00b696d99f946f2c

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.24.0-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io_gcs_filesystem-0.24.0-cp37-cp37m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.7m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.22.0 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/18.0.1 rfc3986/2.0.0 colorama/0.4.3 CPython/3.10.0rc1

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.24.0-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 cde835e68b2b43ddade07c999e7c3251bcd62b1ff165c34fbe9fc6e0f12c3ac9
MD5 4a5299b81dd623ea4fb9e44df92df78d
BLAKE2b-256 8460b86f00ef17caf9a10b41feb07c449a38233b7747a38c9fca91bc56417ea7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page