Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

To ensure you have a version of TensorFlow that is compatible with TensorFlow-IO, you can specify the tensorflow extra requirement during install:

pip install tensorflow-io[tensorflow]

Similar extras exist for the tensorflow-gpu, tensorflow-cpu and tensorflow-rocm packages.

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.25.0 2.8.x Apr 19, 2022
0.24.0 2.8.x Feb 04, 2022
0.23.1 2.7.x Dec 15, 2021
0.23.0 2.7.x Dec 14, 2021
0.22.0 2.7.x Nov 10, 2021
0.21.0 2.6.x Sep 12, 2021
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_gcs_filesystem-0.25.0-cp310-cp310-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.10 Windows x86-64

tensorflow_io_gcs_filesystem-0.25.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

tensorflow_io_gcs_filesystem-0.25.0-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ x86-64

tensorflow_io_gcs_filesystem-0.25.0-cp310-cp310-macosx_10_14_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

tensorflow_io_gcs_filesystem-0.25.0-cp39-cp39-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_gcs_filesystem-0.25.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

tensorflow_io_gcs_filesystem-0.25.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

tensorflow_io_gcs_filesystem-0.25.0-cp39-cp39-macosx_10_14_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_gcs_filesystem-0.25.0-cp38-cp38-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_gcs_filesystem-0.25.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

tensorflow_io_gcs_filesystem-0.25.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tensorflow_io_gcs_filesystem-0.25.0-cp38-cp38-macosx_10_14_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_gcs_filesystem-0.25.0-cp37-cp37m-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_gcs_filesystem-0.25.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

tensorflow_io_gcs_filesystem-0.25.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tensorflow_io_gcs_filesystem-0.25.0-cp37-cp37m-macosx_10_14_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_gcs_filesystem-0.25.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.25.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 5ade6c5fadc067d576ff6b8b2d125ed7f60f4ecb6f9e6480b3cf28037cd74030
MD5 90510472e550f2397dfe5dc7ad31432f
BLAKE2b-256 96aae4d6ddd8563d379ded8c9c89f7878961c797bf1064b9c7d9b733ff3e4d59

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.25.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.25.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4307f25069f6afd7ecebbecd8603491b379af39b98ed74e5395282ef017ca5b2
MD5 2712784bb3db69ba65c7fb496b67e103
BLAKE2b-256 720668c970b6e4086e2b154734509d1d4cff3640721b5ec065bd2893c4e7e57f

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.25.0-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.25.0-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 cbcf8c973637140dceaacfe04b0e4a010f6d41d468cccfbf2e328fed7c6b3c46
MD5 c37242d89007540a31463f04eeaa29fb
BLAKE2b-256 242d295e62fdf069646d8edfd50d3a643bf8e1520b26ab8c5cc7912df1ea3444

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.25.0-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.25.0-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 b7aeae64dd4db1c8c0a4a7581af421fe16fd7704385017c6e4b89c041cef9830
MD5 8a9cee01d4c27347d3d6a03117f833ae
BLAKE2b-256 0ec54852131d169a4596a8e2442b83c529e5bbabc5f81b9c99947b76b6dea63e

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.25.0-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.25.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 e7b15047cce35cd16fe4708ebe384c3a0077201cd2745e20df4204683c84e464
MD5 c3cd97fa9aa6b07fdd9fc6342b55bf24
BLAKE2b-256 42d81ecbc3fbd5b779c72cdda4b777697d7bc8ca7cae8215aa3c7be07bd6a34c

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.25.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.25.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 53611b66d7604976af2410502c05e1230fd1d856a18c5b391266d0bc9a1a14a6
MD5 0fb415e7cf086e79766f74b77301d78b
BLAKE2b-256 473f96c40f5c116622fef6eb0747caafe4272bda08cbbee086e85a1e500c4040

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.25.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.25.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 660e4e837057c0ab96661f56a401bb14e8bc58c3a0d57c54383c3dc7c1a06119
MD5 89962d12752a199a018bcdf07bd4cb54
BLAKE2b-256 787473f5f206237f68d5460edd84e05561c762952100f89903464212cb0045e6

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.25.0-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.25.0-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 3da161baf459980960c2130a5085d8fb3391d4d69f52bc1787c45210218a8576
MD5 191e42c4ed259e92f856807cb9c3e014
BLAKE2b-256 535ec1c871a6ab3c1a68be0e19b781fe7c3e184abd8d02b055cb6aebd71fb5c0

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.25.0-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.25.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 643dd1b3e8942d381efc04013d8b4cd694ba558446eea9a9877096182bdb85e5
MD5 2eac8583697a3ff42f4cf401d4b2c7cf
BLAKE2b-256 80da73297ab0cf9f4664f58f38dc9cca3eb31b83c5f27f518ff7734833d3d6d3

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.25.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.25.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7cfa39909e9e7f408ec2ed19ced70566ef10211eb18dec63e5ad6d42f88a3976
MD5 7e52386e8aabaf6fb6a939484f47885f
BLAKE2b-256 010e66eb6333eb914d4474d280709ac6002a3fecb0867492b673bdc7b57da11f

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.25.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.25.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 a6ce3f487b43b2e8e3e5e0cf9bdeb5cd67c68f5932ea74be0cdba099e3f13050
MD5 0d1207fd2827ade4d2cd65eee3626e01
BLAKE2b-256 ba7c13c8a2e1cf7e2f4a898c75ff388a1873aefb8e3037368030545576bd67ee

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.25.0-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.25.0-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 8cab4ecb376a871bc98124dfee9be53a7387808a7f65438f8adecc1b31e4d228
MD5 f8906355f5c04cce5b70ee5263602b71
BLAKE2b-256 5e4c19923017394a936f64b07ef58572e10732d310bf13b725525ea6bd56eb37

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.25.0-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.25.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 1d1de2dbed94fb3763b020cc31b79dc9185aafc3855976ac5d0ad10967143d3c
MD5 4a6b06052c016c73aaf195853c208d33
BLAKE2b-256 edca9e7750e562ddb88ee4cd7cbf65d93ecde5299f7dd67ea21e4866d5e6f064

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.25.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.25.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2ae065451e915dcf00c730355ecd5a954e47593d71df5865f5224cd915fd8cb3
MD5 c16286f13d12894b51561550ce83ca39
BLAKE2b-256 7b314a49fb2beb7f754344f86cd9a410700d6ee7530ba974163290ceabf89cdd

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.25.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.25.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 30b7489472d1f635df202b7f9910a00354dc791d3f4c8d99ae517f58e0cdbd12
MD5 8ae5e177720331f7f6dfcd7aa1b79123
BLAKE2b-256 74fff93795a6e9fb99462c8f5963061715345067c22a8b3dfa790384cad5cc91

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.25.0-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.25.0-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 f62edcf9a44ebf178233a189cc8f8d7f07ae156a87123a29530e803159cc0a27
MD5 6bddca74ddeebdc235f0593795d6d1ec
BLAKE2b-256 c0fd6e2633a5b5d29075347d3fc3c20f3e8c3b94e9334b959a07a15b487827ba

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page