Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

To ensure you have a version of TensorFlow that is compatible with TensorFlow-IO, you can specify the tensorflow extra requirement during install:

pip install tensorflow-io[tensorflow]

Similar extras exist for the tensorflow-gpu, tensorflow-cpu and tensorflow-rocm packages.

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.27.0 2.10.x Sep 08, 2022
0.26.0 2.9.x May 17, 2022
0.25.0 2.8.x Apr 19, 2022
0.24.0 2.8.x Feb 04, 2022
0.23.1 2.7.x Dec 15, 2021
0.23.0 2.7.x Dec 14, 2021
0.22.0 2.7.x Nov 10, 2021
0.21.0 2.6.x Sep 12, 2021
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_gcs_filesystem-0.27.0-cp310-cp310-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.10 Windows x86-64

tensorflow_io_gcs_filesystem-0.27.0-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ x86-64

tensorflow_io_gcs_filesystem-0.27.0-cp310-cp310-macosx_10_14_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

tensorflow_io_gcs_filesystem-0.27.0-cp39-cp39-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_gcs_filesystem-0.27.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

tensorflow_io_gcs_filesystem-0.27.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

tensorflow_io_gcs_filesystem-0.27.0-cp39-cp39-macosx_10_14_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_gcs_filesystem-0.27.0-cp38-cp38-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_gcs_filesystem-0.27.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

tensorflow_io_gcs_filesystem-0.27.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tensorflow_io_gcs_filesystem-0.27.0-cp38-cp38-macosx_10_14_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_gcs_filesystem-0.27.0-cp37-cp37m-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_gcs_filesystem-0.27.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

tensorflow_io_gcs_filesystem-0.27.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tensorflow_io_gcs_filesystem-0.27.0-cp37-cp37m-macosx_10_14_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_gcs_filesystem-0.27.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: tensorflow_io_gcs_filesystem-0.27.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.4

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.27.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 244754af85090d3fdd67c0b160bce8509e9a43fefccb295e3c9b72df21d9db61
MD5 64b4477c2371b48dc796af8db8ffc416
BLAKE2b-256 b073f150e6aba4e594b9da8f9e038cf71761ca64def5ff171d4fd05156b26847

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.27.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.27.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c22c71ee80f131b2d55d53a3c66a910156004c2dcba976cabd8deeb5e236397a
MD5 0c47b64a28f00af9d01699ab5c586a9a
BLAKE2b-256 4090f516d450d3dbd8888206798b09835cd5b461d89c6a28751d2669279ea69e

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.27.0-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.27.0-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 b3a0ebfeac11507f6fc96162b8b22010b7d715bb0848311e54ef18d88f07014a
MD5 bc7cf663ef3ad00fa7c7efffdca5551a
BLAKE2b-256 2c27ecacd3362f29092257015698a31904e47354ac166c7cee656dcb1d1aa5a5

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.27.0-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io_gcs_filesystem-0.27.0-cp310-cp310-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.10, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.4

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.27.0-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 babca2a12755badd1517043f9d633823533fbd7b463d7d36e9e6179b246731dc
MD5 436e057b3c7190009fe4d5c9d7a91763
BLAKE2b-256 580cce405718f52b77f5c7b184ad83d2cdf0f2335c99de58a2974c3516c22ea3

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.27.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: tensorflow_io_gcs_filesystem-0.27.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.4

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.27.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 152f4c20e5341d486df35f7ce9751a441ed89b43c1036491cd2b30a742fbe20a
MD5 a5e7d3e719f52abde1115011f5bf97e4
BLAKE2b-256 60913e0ef928d0c83047bd52cdce4b08ef7e3c83178ff3f299dbd461fff47215

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.27.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.27.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8d2c01ba916866204b70f96103bbaa24655b1e7b416b399e49dce893a7835aa7
MD5 59ff97c5846f046f44f03d4a1462e5ca
BLAKE2b-256 8b535eaf93dd1d6510bcffcf9e207cc22010adc5399267a03d659ba884e729d4

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.27.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.27.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 ed17c281a28df9ab0547cdf166e885208d2a43db0f0f8fbe66addc4e23ee36ff
MD5 e47bd3eeb59ce69e9f2ec80c36da70f0
BLAKE2b-256 ea8bcf6d23ba46cd1c9d4f0c50e18def25af96af3a0994dab27e8b1de15e9252

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.27.0-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io_gcs_filesystem-0.27.0-cp39-cp39-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.9, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.4

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.27.0-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 f7d24da555e2a1fe890b020b1953819ad990e31e63088a77ce87b7ffa67a7aaf
MD5 dd8821ac4ccfbdde925ef0835a9168d2
BLAKE2b-256 e6aa9e55125960ec8726afc9840c3e10e4712f5bc0bfbac3730f05609edd3088

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.27.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: tensorflow_io_gcs_filesystem-0.27.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.4

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.27.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 9cf6a8efc35a04a8c3d5ec4c6b6e4931a6bc8d4e1f9d9aa0bad5fd272941c886
MD5 d9503bbdaa4aaace674979b058cf6300
BLAKE2b-256 270f181013a8cce110e99b5c2bbfa3ad8efc236b99477da830695375def4ffba

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.27.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.27.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 564a7de156650cac9e1e361dabd6b5733a4ef31f5f11ef5eebf7fe694128334f
MD5 4b967faef25a8f457be43b71f8185c69
BLAKE2b-256 bdef74ab57daba427357eb14a0755166d5c2022e3cd6a33c83d10eae1700ea35

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.27.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.27.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 1ad97ef862c1fb3f7ba6fe3cb5de25cb41d1c55121deaf00c590a5726a7afe88
MD5 2e01a7b48439ef5fe17f693b6f79cfe2
BLAKE2b-256 cfef2b8be753a3454f568faa10c79d607c99374c8f48d2f6788a39ab69dd3ce1

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.27.0-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io_gcs_filesystem-0.27.0-cp38-cp38-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.8, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.4

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.27.0-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 4cc906a12bbd788be071e2dab333f953e82938b77f93429e55ad4b4bfd77072a
MD5 bd0c0cea48b66d7c4b671a52e741b4b7
BLAKE2b-256 10fa71ace7a617724e835e2463732e46b9d24ef16d70a0031e0124a8f573e3e4

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.27.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: tensorflow_io_gcs_filesystem-0.27.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.4

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.27.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 5c809435233893c0df80dce3d10d310885c86dcfb08ca9ebb55e0fcb8a4e13ac
MD5 02bc13ac432bfb61ac8a3c391fcc4c8c
BLAKE2b-256 b76504d51d84cfc8ac2091e1d898c92b5838b2f0be09db6a2683ea1cd7cb6f14

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.27.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.27.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 043008e51e920028b7c564795d82d2487b0baf6bdb23cb9d84796c4a8fcab668
MD5 8a6ee3af43f37b1116bc41db7264e2e5
BLAKE2b-256 4e94737a1c8b619404441fda9ac8804618a71fe5344a6c450cf72d400186a6c3

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.27.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.27.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 e21842a0a7c906525884bdbdc6d82bcfec98c6da5bafe7bfc89fd7253fcab5cf
MD5 3e7f33fe80c4637d7512eaa7515a167e
BLAKE2b-256 7967e0e1869e4a296ec5922752a68a351220f529fdd84acc668e23c75356f4d1

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.27.0-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io_gcs_filesystem-0.27.0-cp37-cp37m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.7m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.4

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.27.0-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 3e510134375ed0467d1d90cd80b762b68e93b429fe7b9b38a953e3fe4306536f
MD5 f642a07cd8e0351bcb654abc5701cb20
BLAKE2b-256 3efaac1ab0b9f6f29b054e1afd98902230e1921d9580c7f06a9cb84fad81002b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page