Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

To ensure you have a version of TensorFlow that is compatible with TensorFlow-IO, you can specify the tensorflow extra requirement during install:

pip install tensorflow-io[tensorflow]

Similar extras exist for the tensorflow-gpu, tensorflow-cpu and tensorflow-rocm packages.

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.28.0 2.11.x Nov 21, 2022
0.27.0 2.10.x Sep 08, 2022
0.26.0 2.9.x May 17, 2022
0.25.0 2.8.x Apr 19, 2022
0.24.0 2.8.x Feb 04, 2022
0.23.1 2.7.x Dec 15, 2021
0.23.0 2.7.x Dec 14, 2021
0.22.0 2.7.x Nov 10, 2021
0.21.0 2.6.x Sep 12, 2021
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_gcs_filesystem-0.28.0-cp311-cp311-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.11 Windows x86-64

tensorflow_io_gcs_filesystem-0.28.0-cp311-cp311-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.12+ x86-64

tensorflow_io_gcs_filesystem-0.28.0-cp311-cp311-macosx_10_14_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.11 macOS 10.14+ x86-64

tensorflow_io_gcs_filesystem-0.28.0-cp310-cp310-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.10 Windows x86-64

tensorflow_io_gcs_filesystem-0.28.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

tensorflow_io_gcs_filesystem-0.28.0-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ x86-64

tensorflow_io_gcs_filesystem-0.28.0-cp310-cp310-macosx_10_14_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

tensorflow_io_gcs_filesystem-0.28.0-cp39-cp39-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_gcs_filesystem-0.28.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

tensorflow_io_gcs_filesystem-0.28.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

tensorflow_io_gcs_filesystem-0.28.0-cp39-cp39-macosx_10_14_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_gcs_filesystem-0.28.0-cp38-cp38-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_gcs_filesystem-0.28.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

tensorflow_io_gcs_filesystem-0.28.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tensorflow_io_gcs_filesystem-0.28.0-cp38-cp38-macosx_10_14_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_gcs_filesystem-0.28.0-cp37-cp37m-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_gcs_filesystem-0.28.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

tensorflow_io_gcs_filesystem-0.28.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tensorflow_io_gcs_filesystem-0.28.0-cp37-cp37m-macosx_10_14_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_gcs_filesystem-0.28.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: tensorflow_io_gcs_filesystem-0.28.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.28.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 5fbef5836e70026245d8d9e692c44dae2c6dbc208c743d01f5b7a2978d6b6bc6
MD5 a0a7242ea92486b8117e75e6a857e0bd
BLAKE2b-256 0e99d2e8e6b9269a53fdbcacc11f0fb8d6a44a1d0b4118043e892102a4f85d75

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.28.0-cp311-cp311-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.28.0-cp311-cp311-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 6d95f306ff225c5053fd06deeab3e3a2716357923cb40c44d566c11be779caa3
MD5 bc53e851f581c2918bb9068bd0fb0fea
BLAKE2b-256 fceb2d62cc37fda071a12ba043f4fed34786e2c6c3fd725b054c231c6024ca0c

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.28.0-cp311-cp311-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io_gcs_filesystem-0.28.0-cp311-cp311-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.11, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.28.0-cp311-cp311-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 bbf245883aa52ec687b66d0fcbe0f5f0a92d98c0b1c53e6a736039a3548d29a1
MD5 5c7130f5275f0dd1c7d5dac7057aa26c
BLAKE2b-256 aebfd5c07c4ad8bd7ea178dded83f53d6fdcd72f1ca4829e646b83c2553d4e8c

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.28.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: tensorflow_io_gcs_filesystem-0.28.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.28.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 698d7f89e09812b9afeb47c3860797343a22f997c64ab9dab98132c61daa8a7d
MD5 88b363fdc83e4e96619bd30f9a10dcee
BLAKE2b-256 b31d41230dbdfad3b12950e6c6e47d7137ecaebfce3843656af45cfbee724938

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.28.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.28.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9cf11d36d5aac6365f9f6c4bc71eb23346a2f5dc139c91af1e2ea06cfd7f69a7
MD5 4040aee0f71d8f698a25d9121ceba59a
BLAKE2b-256 7500634608b5d7545d7c14b0c816252f13e096badf6049f83599c9fa6a92f4b9

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.28.0-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.28.0-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 52988659f405166df79905e9859bc84ae2a71e3ff61522ba32a95e4dce8e66d2
MD5 694a176e9873b2603a1e0764027dc4e9
BLAKE2b-256 da8b211edfc44a626bca4e410d307f9cca695ec34854981c8d85ba57208a0033

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.28.0-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io_gcs_filesystem-0.28.0-cp310-cp310-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.10, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.28.0-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 22753dc28c949bfaf29b573ee376370762c88d80330fe95cfb291261eb5e927a
MD5 e7683dd0ab5e72c072a5bc0228fe3363
BLAKE2b-256 222a8d1960f178a15e479007bc4025e56373257625c1c513856779b3e1af211c

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.28.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: tensorflow_io_gcs_filesystem-0.28.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.28.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 9484893779324b2d34874b0aacf3b824eb4f22d782e75df029cbccab2e607974
MD5 8648f39a91380fb6e22e6bbdadc7cdcd
BLAKE2b-256 44cea7ca0a298d7008a7da51ad3722240f9c9e4819e50347d6ed64da2595a5b7

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.28.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.28.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 47944fba38f46c9137b7bc27fb293953249d437f225bf46b96bac6a177bdfe04
MD5 4c868072ce8487744458ecaa3303f1d5
BLAKE2b-256 ab1b2b097c0689af658477c6cc7ab9ef275a2c4ec11e4c32be00676a731fa0f7

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.28.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.28.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 366e1eff8dbd6b64333d7061e2a8efd081ae4742614f717ced08d8cc9379eb50
MD5 269d44f1af121e50f90aab56873951b0
BLAKE2b-256 cedfbb114b26881f0301bf110eff3a655cc33b04546c42eeed29cb9497716930

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.28.0-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io_gcs_filesystem-0.28.0-cp39-cp39-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.9, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.28.0-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 cc062ce13ec95fb64b1fd426818a6d2b0e5be9692bc0e43a19cce115b6da4336
MD5 dcf5f0dda6f880b5751ea5f154bb7822
BLAKE2b-256 04e761570369e3407fea8a959f5526dcdf4463aa80396469c5f984780f55e8ee

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.28.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: tensorflow_io_gcs_filesystem-0.28.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.28.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 bfed720fc691d3f45802a7bed420716805aef0939c11cebf25798906201f626e
MD5 8fd6e2f820df18e9f206c88895fe5990
BLAKE2b-256 f047ad4c4cb2e3729aead5335316f481e1f883fc2bfef35362806102010da0e9

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.28.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.28.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3ebb4724594bb897f74c637c256cb9509b25fc6b83860a2a6e2a6d42fd1a1a2a
MD5 d543f39ca61620dc4d4d193bfa088043
BLAKE2b-256 87bd193e9870a45e70ac0e8ea01122ede2bee66ff9534f8a13742412c30984ec

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.28.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.28.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 a6670e0da16c884267e896ea5c3334d6fd319bd6ff7cf917043a9f3b2babb1b3
MD5 4a2bfbd33fa40bf4964c7115315b5ce8
BLAKE2b-256 2b7ba26f819dc623e27ce93cdf8ad41c6aa64bb31a406af6551cfb0d48dd0671

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.28.0-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io_gcs_filesystem-0.28.0-cp38-cp38-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.8, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.28.0-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 b6e2d275020fb4d1a952cd3fa546483f4e46ad91d64e90d3458e5ca3d12f6477
MD5 3aa542f84248ba2644f7cbdba3551507
BLAKE2b-256 fb01f60864829f68ea819214925f398fc0d52637ee8964aa2b00b966fbbd43dd

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.28.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: tensorflow_io_gcs_filesystem-0.28.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.28.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 c5d99f56c12a349905ff684142e4d2df06ae68ecf50c4aad5449a5f81731d858
MD5 911349551b1a84928ae96a535453a42e
BLAKE2b-256 946563501eb0afdedb0608b05e1145322b7ba6f3577e2598da8c2be07290cb5d

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.28.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.28.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b8f4b1b83ee28906881221c0a40822cbf30ebfcc3e96430f91f396309e6b452c
MD5 0801990a9d7a3d37f3ffd7f5b8030506
BLAKE2b-256 ace423a7856d7d1cf094b9c340513b4d80df0d01af511d397bbde26adcc37c1f

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.28.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.28.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 f76cbe1a784841c223f6861e5f6c7e53aa6232cb626d57e76881a0638c365de6
MD5 ef1918cc4f4ffd788cd016a7d155d935
BLAKE2b-256 83f27b1a27d3dc65b90af8cb883d4b27c5a9d2711433e70516194a28da3bbb48

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.28.0-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io_gcs_filesystem-0.28.0-cp37-cp37m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.7m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.28.0-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 00cf6a92f1f9f90b2ba2d728870bcd2a70b116316d0817ab0b91dd390c25b3fd
MD5 2c22aa3c674f9705f33366c595a55856
BLAKE2b-256 cefc0b321f3fa795e5044bb82695900e9cabbca24496805fcc54031a60746488

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page