Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

To ensure you have a version of TensorFlow that is compatible with TensorFlow-IO, you can specify the tensorflow extra requirement during install:

pip install tensorflow-io[tensorflow]

Similar extras exist for the tensorflow-gpu, tensorflow-cpu and tensorflow-rocm packages.

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.32.0 2.12.x Mar 28, 2022
0.31.0 2.11.x Feb 25, 2022
0.30.0 2.11.x Jan 20, 2022
0.29.0 2.11.x Dec 18, 2022
0.28.0 2.11.x Nov 21, 2022
0.27.0 2.10.x Sep 08, 2022
0.26.0 2.9.x May 17, 2022
0.25.0 2.8.x Apr 19, 2022
0.24.0 2.8.x Feb 04, 2022
0.23.1 2.7.x Dec 15, 2021
0.23.0 2.7.x Dec 14, 2021
0.22.0 2.7.x Nov 10, 2021
0.21.0 2.6.x Sep 12, 2021
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_gcs_filesystem-0.32.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

tensorflow_io_gcs_filesystem-0.32.0-cp311-cp311-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.12+ x86-64

tensorflow_io_gcs_filesystem-0.32.0-cp311-cp311-macosx_10_14_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.11 macOS 10.14+ x86-64

tensorflow_io_gcs_filesystem-0.32.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

tensorflow_io_gcs_filesystem-0.32.0-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ x86-64

tensorflow_io_gcs_filesystem-0.32.0-cp310-cp310-macosx_10_14_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

tensorflow_io_gcs_filesystem-0.32.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

tensorflow_io_gcs_filesystem-0.32.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

tensorflow_io_gcs_filesystem-0.32.0-cp39-cp39-macosx_10_14_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_gcs_filesystem-0.32.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

tensorflow_io_gcs_filesystem-0.32.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tensorflow_io_gcs_filesystem-0.32.0-cp38-cp38-macosx_10_14_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_gcs_filesystem-0.32.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tensorflow_io_gcs_filesystem-0.32.0-cp37-cp37m-macosx_10_14_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_gcs_filesystem-0.32.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.32.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 842f5f09cd756bdb3b4d0b5571b3a6f72fd534d42da938b9acf0ef462995eada
MD5 b5708d1c52d1ca9da770aff29f2e1580
BLAKE2b-256 f3cb0259f07d507a068fe5637a5a405f95953d4df1af891e5d86293873d6fd38

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.32.0-cp311-cp311-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.32.0-cp311-cp311-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 336d9b3fe6b55aea149c4f6aa1fd6ffaf27d4e5c37e55a182340b47caba38846
MD5 96566304067aaefee16fc315790892e5
BLAKE2b-256 62e5187dfacac77cc415fee78bf7ea622b570efeb49150f514bdb1788602ebdd

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.32.0-cp311-cp311-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io_gcs_filesystem-0.32.0-cp311-cp311-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.11, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.32.0-cp311-cp311-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 7f15fd22e592661b10de317be2f42a0f84be7bfc5e6a565fcfcb04b60d625b78
MD5 a57d3fc8ee25dae9463142d2de8c0ca5
BLAKE2b-256 80beac584bdf014db9e32cadae72a927171c41e4735d444b6dc910a6b4d37e63

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.32.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.32.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 db682e9a510c27dd35710ba5a2c62c371e25b727741b2fe3a920355fa501e947
MD5 9c49d764079663b87d61adf53fc9848b
BLAKE2b-256 717c5eddd448b0183e683376c89e2cbd506ad935867d97b83f6100731f444cf0

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.32.0-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.32.0-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 045d51bba586390d0545fcd8a18727d62b175eb142f6f4c6d719d39de40774cd
MD5 646376c328a83970f8e9c0152abab5b5
BLAKE2b-256 9677920d9c132591faeb72c3c3d342c5139ef2d5c6863d2861c4e3927803bcf0

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.32.0-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io_gcs_filesystem-0.32.0-cp310-cp310-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.10, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.32.0-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 74a7e25e83d4117a7ebb09a3f247553a5497393ab48c3ee0cf0d17b405026817
MD5 455fef7b2fdf507e7ac4c28d4cec6748
BLAKE2b-256 ca0cac9d1eb1c6a174399a3fedf1fbbc5c99cc80e2c04fdc7e56d4f3490e3472

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.32.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.32.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 28202492d904a6e280cf27560791e87ac1c7566000db82065d63a70c27008af2
MD5 986702acca9ba44cbc5b5efa4c54a1c9
BLAKE2b-256 425b5a130d81272376f069157b16326c52c8e9ac07711200cf11311730110e54

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.32.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.32.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 8214cdf85bea694160f9035ff395221c1e25e119784ccb4c104919b1f5dec84e
MD5 ba5607180fe9ed42175076d10e819b8c
BLAKE2b-256 ae4fc0cb9a4c5558e98ae106ddaa963c3497dd8ad9c1a38874acfacae07f69bc

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.32.0-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io_gcs_filesystem-0.32.0-cp39-cp39-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.9, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.32.0-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 122be149e5f6a030f5c2901be0cc3cb07619232f7b03889e2cdf3da1c0d4f92f
MD5 fe96c32836d7e39a213ba634093a62e3
BLAKE2b-256 54a9f692e98c381f86ad810e00e4eac0f1fc5a30ba6421db0472fea73a11ec6e

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.32.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.32.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5635df0bbe40f971dc1b946e3372744b0bdfda45c38ffcd28ef53a32bb8da4da
MD5 a5ac31124e15e6eb2846e4aceba39f1a
BLAKE2b-256 ec4b55f9b2e5d80761527a676d0e28865a6410699c4ccf11bba836cf206774a8

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.32.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.32.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 79fdd02103b8ae9f8b89af41f744c013fa1caaea709de19833917795e3063857
MD5 00929101fe7dac1b8f3f013e8c22c1a2
BLAKE2b-256 e1101dc513724b5366b192989859160477c4944810440646f4d55318ca0a2917

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.32.0-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io_gcs_filesystem-0.32.0-cp38-cp38-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.8, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.32.0-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 21de7dcc06eb1e7de3c022b0072d90ba35ef886578149663437aa7a6fb5bf6b3
MD5 a07c85782c69ebb7db02c3e109ae4ecf
BLAKE2b-256 8e6f7da0508e3ab6d2a3f21bb1f481414566955253eaac7ba17604c507732631

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.32.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.32.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 05e65d3cb6c93a7929b384d86c6369c63cbbab8a770440a3d95e094878403f9f
MD5 8315f2df37514e99623929e2a5a90b59
BLAKE2b-256 c8e3ccbaed2c80c8fbcbddfc9500f175b1f90ba06d4a3c86a61ec8967a4e54e3

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.32.0-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io_gcs_filesystem-0.32.0-cp37-cp37m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.7m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.32.0-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 1ce80e1555d6ee88dda67feddf366cc8b30252b5837a7a17303df7b06a71fc2e
MD5 e87fed74f2db7f228d3203e8cd682e10
BLAKE2b-256 6803a2469aec47577816b9f56f7f2e51f002c633dfc50c0e9e149bc683ca1b73

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page