Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

To ensure you have a version of TensorFlow that is compatible with TensorFlow-IO, you can specify the tensorflow extra requirement during install:

pip install tensorflow-io[tensorflow]

Similar extras exist for the tensorflow-gpu, tensorflow-cpu and tensorflow-rocm packages.

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.34.0 2.13.x Sep 08, 2023
0.33.0 2.13.x Aug 01, 2023
0.32.0 2.12.x Mar 28, 2023
0.31.0 2.11.x Feb 25, 2023
0.30.0 2.11.x Jan 20, 2023
0.29.0 2.11.x Dec 18, 2022
0.28.0 2.11.x Nov 21, 2022
0.27.0 2.10.x Sep 08, 2022
0.26.0 2.9.x May 17, 2022
0.25.0 2.8.x Apr 19, 2022
0.24.0 2.8.x Feb 04, 2022
0.23.1 2.7.x Dec 15, 2021
0.23.0 2.7.x Dec 14, 2021
0.22.0 2.7.x Nov 10, 2021
0.21.0 2.6.x Sep 12, 2021
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_gcs_filesystem-0.34.0-cp311-cp311-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.12+ x86-64

tensorflow_io_gcs_filesystem-0.34.0-cp311-cp311-macosx_12_0_arm64.whl (1.9 MB view details)

Uploaded CPython 3.11 macOS 12.0+ ARM64

tensorflow_io_gcs_filesystem-0.34.0-cp311-cp311-macosx_10_14_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.11 macOS 10.14+ x86-64

tensorflow_io_gcs_filesystem-0.34.0-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ x86-64

tensorflow_io_gcs_filesystem-0.34.0-cp310-cp310-macosx_12_0_arm64.whl (1.9 MB view details)

Uploaded CPython 3.10 macOS 12.0+ ARM64

tensorflow_io_gcs_filesystem-0.34.0-cp310-cp310-macosx_10_14_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

tensorflow_io_gcs_filesystem-0.34.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

tensorflow_io_gcs_filesystem-0.34.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

tensorflow_io_gcs_filesystem-0.34.0-cp39-cp39-macosx_12_0_arm64.whl (1.9 MB view details)

Uploaded CPython 3.9 macOS 12.0+ ARM64

tensorflow_io_gcs_filesystem-0.34.0-cp39-cp39-macosx_10_14_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_gcs_filesystem-0.34.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

tensorflow_io_gcs_filesystem-0.34.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tensorflow_io_gcs_filesystem-0.34.0-cp38-cp38-macosx_12_0_arm64.whl (1.9 MB view details)

Uploaded CPython 3.8 macOS 12.0+ ARM64

tensorflow_io_gcs_filesystem-0.34.0-cp38-cp38-macosx_10_14_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_gcs_filesystem-0.34.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tensorflow_io_gcs_filesystem-0.34.0-cp37-cp37m-macosx_12_0_arm64.whl (1.9 MB view details)

Uploaded CPython 3.7m macOS 12.0+ ARM64

tensorflow_io_gcs_filesystem-0.34.0-cp37-cp37m-macosx_10_14_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_gcs_filesystem-0.34.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.34.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6e6353123a5b51397950138a118876af833a7db66b531123bb86f82e80ab0e72
MD5 b96b6c674f0147c524b03fcf9835addd
BLAKE2b-256 375dce999d9dbc0259ed846ccd5ff17c3439eed541cca97efbaf35fcacc3e56d

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.34.0-cp311-cp311-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.34.0-cp311-cp311-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 cbe26c4a3332589c7b724f147df453b5c226993aa8d346a15536358d77b364c4
MD5 9542f8937b12010f31ee65da12dee7c5
BLAKE2b-256 4c64245746084cdd5fafa680a6e7effeecf87abeeac2796decfa835a99b397c7

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.34.0-cp311-cp311-macosx_12_0_arm64.whl.

File metadata

  • Download URL: tensorflow_io_gcs_filesystem-0.34.0-cp311-cp311-macosx_12_0_arm64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.11, macOS 12.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.34.0-cp311-cp311-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 ec4604c99cbb5b708f4516dee27aa655abae222b876c98b740f4c2f89dd5c001
MD5 8938b4d8b74f76f092ae6d13d28c0ae8
BLAKE2b-256 5be91444afc87596a90066704cc46ed661a4e7b348eec03a3fc2ca10ab917254

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.34.0-cp311-cp311-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io_gcs_filesystem-0.34.0-cp311-cp311-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.11, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.34.0-cp311-cp311-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 a17a616d2c7fae83de4424404815843507d40d4eb0d507c636a5493a20c3d958
MD5 c161c3c970ffbf935f3941b613d3b818
BLAKE2b-256 3d34252794e3f737594f8ac4ac9f2ee9ba7b806b6825832af3ff9b2fd893ce8f

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.34.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.34.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2b035f4c92639657b6d376929d550ac3dee9e6c0523eb434eefe0a27bae3d05b
MD5 8f73d94aaec79252ce69ee73262a680b
BLAKE2b-256 42d89cf7f7d58d9b74fd0a233c4b22b15e4278d43a05b51cbf1c4d9a2e25e61c

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.34.0-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.34.0-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 5813c336b4f7cb0a01ff4cc6cbd3edf11ef67305baf0e3cf634911b702f493f8
MD5 efd7f58c7764ecf80ea0b4d790ce4a44
BLAKE2b-256 88998b507a009359fd55e411001acb64a1a8a4f81a26cb6e21c3b75c7fda4ae3

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.34.0-cp310-cp310-macosx_12_0_arm64.whl.

File metadata

  • Download URL: tensorflow_io_gcs_filesystem-0.34.0-cp310-cp310-macosx_12_0_arm64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.10, macOS 12.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.34.0-cp310-cp310-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 b9a93fcb01db269bc845a1ced431f3c61201755ce5f9ec4885760f30122276ef
MD5 a52f22228e8b8e618144edd95b7265ae
BLAKE2b-256 feba4af347fc269893a42ad9eff66aa6330032220b41b02ba31a407e89812e48

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.34.0-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io_gcs_filesystem-0.34.0-cp310-cp310-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.10, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.34.0-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 d831702fbb270996b27cda7fde06e0825b2ea81fd8dd3ead35242f4f8b3889b8
MD5 7a11bc2bfab19b0151b7f4a5ba2660fd
BLAKE2b-256 f854d3923d9bbde098c60d1168ecf39025f02227b2037f2dd64ad460b2467b4a

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.34.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.34.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b20622f8572fcb6c93e8f7d626327472f263e47ebd63d2153ef09162ef5ef7b5
MD5 5863624b9380098c07f77a4bfed07097
BLAKE2b-256 7bb126b4dbd3d923e055bcf73ae30e486de74d08e6be14e29596fd33e01da331

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.34.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.34.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 396bfff61b49f80b86ddebe0c76ae0f2731689cee49ad7d782625180b50b13af
MD5 c3feaaef1a1516f51ef5fe10a4c4723e
BLAKE2b-256 4949fa8224d5da4c81c958503c159bae176cae329f8704bef881d8fd7d99a180

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.34.0-cp39-cp39-macosx_12_0_arm64.whl.

File metadata

  • Download URL: tensorflow_io_gcs_filesystem-0.34.0-cp39-cp39-macosx_12_0_arm64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.9, macOS 12.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.34.0-cp39-cp39-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 0dafed144673e1173528768fe208a7c5a6e8edae40208381cac420ee7c918ec9
MD5 f72f128f910fe1e086825223ee99e619
BLAKE2b-256 f91774b5b4f7c965aa4e7cbf7dd287744b71692abc52d7c805b4b1d70175f64f

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.34.0-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io_gcs_filesystem-0.34.0-cp39-cp39-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.9, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.34.0-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 182b0fbde7e9a537fda0b354c28b0b6c035736728de8fe2db7ef49cf90352014
MD5 2f21e22688a18d5020942f50ec4fedef
BLAKE2b-256 a2fa77af52958f3951128d943fce1c9bbdad599a9d1b4ab8d76bf0d646525d59

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.34.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.34.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8d8664bddbe4e7b56ce94db8b93ea9077a158fb5e15364e11e29f93015ceea24
MD5 79710c3fb26a59f3a12d57408e741452
BLAKE2b-256 98790a4fe1b411844e4cba9f175e5a402d8914307d76d3013bd8cb4c712a6899

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.34.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.34.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 027a07553367187f918a99661f63ae0506b91b77a70bee9c7ccaf3920bf7cfe7
MD5 83a2996c82656632fed6a1c3677ed79d
BLAKE2b-256 25f60f259f41abaa489f185e16d397d5f5a5973970d4677c7d39456cea6f4453

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.34.0-cp38-cp38-macosx_12_0_arm64.whl.

File metadata

  • Download URL: tensorflow_io_gcs_filesystem-0.34.0-cp38-cp38-macosx_12_0_arm64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.8, macOS 12.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.34.0-cp38-cp38-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 3f346b287ed2400e09b13cfd8524222fd70a66aadb9164c645286c2087007e9f
MD5 487fd41c236a92edbe157cbd9cd47032
BLAKE2b-256 3b8f916ccfc458600251e7b86f878d8d28515e8b3b62837f9c44c135262dc876

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.34.0-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io_gcs_filesystem-0.34.0-cp38-cp38-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.8, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.34.0-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 7f60183473f0ca966451bb1d1bb5dc29b3cf9c74d1d0e7f2ed46760ed56bd4af
MD5 c79da909d1c48fec1b64eccf0d53e6ec
BLAKE2b-256 437ca72ccb308a8ef4bd3f7d267779c83bd38f29b17deb27b66ae56157de380a

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.34.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.34.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 44ad387a812a78e7424bb8bee3820521ae1c044bddf72b1e163e8df95c124a74
MD5 3d0fd66c95f74b7b14b44024f73aed08
BLAKE2b-256 4745f8aeca557bbd5fb505363520fec96cdec72467725ec4bc12fa24372b011a

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.34.0-cp37-cp37m-macosx_12_0_arm64.whl.

File metadata

  • Download URL: tensorflow_io_gcs_filesystem-0.34.0-cp37-cp37m-macosx_12_0_arm64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.7m, macOS 12.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.34.0-cp37-cp37m-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 d3feba2dd76f7c188137c34642d68d378f0eed81636cb95090ecb1496722707c
MD5 5cdeb02035287a696bc51e9be4043db7
BLAKE2b-256 07215f0c01ed357e7bb00f45f5525af961395bb36b9d2365db987c966ea302f1

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.34.0-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io_gcs_filesystem-0.34.0-cp37-cp37m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.7m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.34.0-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 f211d2b3db8f9931765992b607b71cbfb98c8cd6169079d004a67a94ab10ecb4
MD5 1f920bb25b480b9594dab84ba16ee400
BLAKE2b-256 b73087d0019ce02884615c547e35bc6c9b0aee9aea02b08a2dcc1bb80f8f4eae

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page