Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

To ensure you have a version of TensorFlow that is compatible with TensorFlow-IO, you can specify the tensorflow extra requirement during install:

pip install tensorflow-io[tensorflow]

Similar extras exist for the tensorflow-gpu, tensorflow-cpu and tensorflow-rocm packages.

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.35.0 2.14.x Dec 18, 2023
0.34.0 2.13.x Sep 08, 2023
0.33.0 2.13.x Aug 01, 2023
0.32.0 2.12.x Mar 28, 2023
0.31.0 2.11.x Feb 25, 2023
0.30.0 2.11.x Jan 20, 2023
0.29.0 2.11.x Dec 18, 2022
0.28.0 2.11.x Nov 21, 2022
0.27.0 2.10.x Sep 08, 2022
0.26.0 2.9.x May 17, 2022
0.25.0 2.8.x Apr 19, 2022
0.24.0 2.8.x Feb 04, 2022
0.23.1 2.7.x Dec 15, 2021
0.23.0 2.7.x Dec 14, 2021
0.22.0 2.7.x Nov 10, 2021
0.21.0 2.6.x Sep 12, 2021
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_gcs_filesystem-0.35.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

tensorflow_io_gcs_filesystem-0.35.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

tensorflow_io_gcs_filesystem-0.35.0-cp311-cp311-macosx_10_14_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.11 macOS 10.14+ x86-64

tensorflow_io_gcs_filesystem-0.35.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

tensorflow_io_gcs_filesystem-0.35.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

tensorflow_io_gcs_filesystem-0.35.0-cp310-cp310-macosx_10_14_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

tensorflow_io_gcs_filesystem-0.35.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

tensorflow_io_gcs_filesystem-0.35.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

tensorflow_io_gcs_filesystem-0.35.0-cp39-cp39-macosx_10_14_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_gcs_filesystem-0.35.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

File details

Details for the file tensorflow_io_gcs_filesystem-0.35.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.35.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b8fb3402fb1457482c386ea19371bc76383412ae9ea4396edb1e8adb4ba76f21
MD5 2025ef846ddc11ea8a7ea40c25f6177e
BLAKE2b-256 7bd7733aed9a2844a3947ef78eb5fbf22c1f64883779891d31a68d09ac7b651e

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.35.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.35.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6e997389bfe008210cbd97c0c738d64282a2f03ad4d0536013bb0a9efde0c283
MD5 9e8bdef66d6d24abbe95a4ac4a7b1cb0
BLAKE2b-256 3fb6dfe36c0801bfbaf264f68c994eb5003c85a8cf11b6cd3c834042b23e3e1e

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.35.0-cp311-cp311-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io_gcs_filesystem-0.35.0-cp311-cp311-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.11, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.35.0-cp311-cp311-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 35b6eca7225c815d962254327195f191d88c3c9c2278a5ab23e0ac834acbadbb
MD5 1cb6764bce71f55ad4d4a6cc13f92ce5
BLAKE2b-256 92e525a9be2e211f6ed313105ebd0446b35382e62487c0a9c66fcf795556e671

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.35.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.35.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ac8f1de60fdf9c734aea967b98555e366ac8743f77bca15c49eff023f587076b
MD5 a88203b16364ea88505bb804633138bb
BLAKE2b-256 412d371c2f839cce26c9737a1b04ee28b2edbb8210f8ab743311b881ceb1005c

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.35.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.35.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 dd8f30908bf8b7b2a017d6b145720d105aff7f998422671b71729708ec7b2fe4
MD5 4da173112511bbdeb61a02772d746985
BLAKE2b-256 e2bcd5bc2e0eb3b33028a4288c82aef856ade7a222f9e012e1925f6f5183fbb7

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.35.0-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io_gcs_filesystem-0.35.0-cp310-cp310-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.10, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.35.0-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 5521721b38105496d4b43a4ffb0af5b04cc4873d464f26fbceddf8d63815ce98
MD5 2337a1941393cb9ed93a9230bea1dc03
BLAKE2b-256 9d81f8b90dceea00c1608e80bbe999c14ba6b74029b54f8ac6d4febe9dc5f084

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.35.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.35.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1856fe321fdb75f3386d92109c60db6ef097f610b450f9cc69d76444fb9980d1
MD5 10347ac286cc8401573519d110ca6eec
BLAKE2b-256 abee2daf33d2aa138bcbd6f24fc4aca4881fd2eb651b18aa18b9db043affbb50

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.35.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.35.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0fce1466bdb91096b6d22e7df17358ba228bcb92db5cff83f2f9f1c68eb26788
MD5 a7e3b7fdf648fc7e0864a5e837faed1b
BLAKE2b-256 3e18faca0b4fd444d2e0a46feb351ab66cb6146c9e49a4ccf90ad9553af099a0

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.35.0-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io_gcs_filesystem-0.35.0-cp39-cp39-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.9, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.35.0-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 c4f786eebd98d401565374722f2e67f3878675b0d87489cbaa13c70ee6ac370a
MD5 e5fda353f6911162e516a08d5cef6fe6
BLAKE2b-256 8f81bb280d0aaf4eb7ae6f36ed42be3cf72022720d75393db8e40ba8a9b7f184

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.35.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.35.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 eb6bf8f5b40207ecb17e7fdc3b4fc824a8361267c14e9528c1688e16de135cb7
MD5 5c33a69f0a0535868e08ed57808debbc
BLAKE2b-256 aa4dc0710d56efa1c40f6279fda397f0c9ec4def869311320c0a9d695808fb2d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page