Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

To ensure you have a version of TensorFlow that is compatible with TensorFlow-IO, you can specify the tensorflow extra requirement during install:

pip install tensorflow-io[tensorflow]

Similar extras exist for the tensorflow-gpu, tensorflow-cpu and tensorflow-rocm packages.

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.36.0 2.15.x Feb 02, 2024
0.35.0 2.14.x Dec 18, 2023
0.34.0 2.13.x Sep 08, 2023
0.33.0 2.13.x Aug 01, 2023
0.32.0 2.12.x Mar 28, 2023
0.31.0 2.11.x Feb 25, 2023
0.30.0 2.11.x Jan 20, 2023
0.29.0 2.11.x Dec 18, 2022
0.28.0 2.11.x Nov 21, 2022
0.27.0 2.10.x Sep 08, 2022
0.26.0 2.9.x May 17, 2022
0.25.0 2.8.x Apr 19, 2022
0.24.0 2.8.x Feb 04, 2022
0.23.1 2.7.x Dec 15, 2021
0.23.0 2.7.x Dec 14, 2021
0.22.0 2.7.x Nov 10, 2021
0.21.0 2.6.x Sep 12, 2021
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_gcs_filesystem-0.36.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

tensorflow_io_gcs_filesystem-0.36.0-cp311-cp311-macosx_12_0_arm64.whl (3.4 MB view details)

Uploaded CPython 3.11 macOS 12.0+ ARM64

tensorflow_io_gcs_filesystem-0.36.0-cp311-cp311-macosx_10_14_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.11 macOS 10.14+ x86-64

tensorflow_io_gcs_filesystem-0.36.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

tensorflow_io_gcs_filesystem-0.36.0-cp310-cp310-macosx_12_0_arm64.whl (3.4 MB view details)

Uploaded CPython 3.10 macOS 12.0+ ARM64

tensorflow_io_gcs_filesystem-0.36.0-cp310-cp310-macosx_10_14_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

tensorflow_io_gcs_filesystem-0.36.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

tensorflow_io_gcs_filesystem-0.36.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

tensorflow_io_gcs_filesystem-0.36.0-cp39-cp39-macosx_12_0_arm64.whl (3.4 MB view details)

Uploaded CPython 3.9 macOS 12.0+ ARM64

tensorflow_io_gcs_filesystem-0.36.0-cp39-cp39-macosx_10_14_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_gcs_filesystem-0.36.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.36.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 fa346fd1dd9f57848b73874007440504f060fadd689fa1cc29cc49817d0eeaf3
MD5 222b7ccc58a132565859126dd8e00277
BLAKE2b-256 26c0fdea4bc8259b970b67449f913097b9fff19d8b57bf47443361c20bda83dd

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.36.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.36.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1bd4d946b5fa23220daa473a80e511a5fb27493d7e49d17dff0bb43bb0a31f32
MD5 ba7169a04dc4613fa11f9bd671042d72
BLAKE2b-256 446610773d9ea847ba0ae5c36478333d92c6dae3396205bf18091910f63f3ee9

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.36.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.36.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4d72db1ab03edb65fa1e98d06e504ccbc64282d38ab3589afb6db66dc448d1c1
MD5 d2aa2e18ad2c569e29259e87036ff6f4
BLAKE2b-256 75b96547466c7d040d99a89fc95f7a7423945c7979d5d096f2eeb8a59333f655

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.36.0-cp311-cp311-macosx_12_0_arm64.whl.

File metadata

  • Download URL: tensorflow_io_gcs_filesystem-0.36.0-cp311-cp311-macosx_12_0_arm64.whl
  • Upload date:
  • Size: 3.4 MB
  • Tags: CPython 3.11, macOS 12.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.36.0-cp311-cp311-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 848e8e89a0f49258c7782189c938d8d1162d989da1a80c79f95c7af3ef6006c8
MD5 3be9960fd742d8f9f1fbe51cfa4101de
BLAKE2b-256 3e561b7ef816e448464a93da70296db237129910b4452d6b4582d5e23fb07880

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.36.0-cp311-cp311-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io_gcs_filesystem-0.36.0-cp311-cp311-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 2.5 MB
  • Tags: CPython 3.11, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.36.0-cp311-cp311-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 72c3ca4b8c0d8dbdd970699d05a100107cf200317ad8e6a8373e2c37225cd552
MD5 4e924702def2b6d23103c2d02cccabfe
BLAKE2b-256 ade31009781ce3c0d92634fa2fb3dc4bb0237fe7aaf70f2ab53160f3e82e7d63

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.36.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.36.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 be1ff92559dfa23048b01179a1827081947583f5c6f9986ccac471df8a29322a
MD5 db89e095a0d4b9155f4ad39d0d8cb12d
BLAKE2b-256 7a5f2cce4de2189f72e8d0b2bf7de1f3270cdaf397f8458008e79584b024e5a4

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.36.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.36.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c477aed96864ceae77d7051c3b687f28813aba7320fc5dd552164fad6ec8d1a1
MD5 53142525c577dc171ce1809d4f7793f9
BLAKE2b-256 3a69fa16b73c601de7dcd8ca1cfb65cafc5d4ce0b1bd810ab3d9d332f4b92eb5

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.36.0-cp310-cp310-macosx_12_0_arm64.whl.

File metadata

  • Download URL: tensorflow_io_gcs_filesystem-0.36.0-cp310-cp310-macosx_12_0_arm64.whl
  • Upload date:
  • Size: 3.4 MB
  • Tags: CPython 3.10, macOS 12.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.36.0-cp310-cp310-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 e9b8aaca2789af356c42afda0f52380f82e5abb2f3c0b85087833fcfe03875d8
MD5 93af471fca7325fdb74647ac002523e0
BLAKE2b-256 c764bb98ed6e6b797c134d66cb199e2d5b998cfcb9afff0312bc01665b3a6700

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.36.0-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io_gcs_filesystem-0.36.0-cp310-cp310-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 2.5 MB
  • Tags: CPython 3.10, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.36.0-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 702c6df62b38095ff613c433546d9424d4f33902a5ab26b00fd26457e27a99fa
MD5 0b0bdc2fa24affd235e7045a5cadda50
BLAKE2b-256 c9edc007d81e1e07767af3cb4da44989db54a863ab993a79142a348daf3493af

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.36.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.36.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e97ff5c280eb10f699098ae21057be2b146d39e8a906cd5db91f2ea6c34e47d0
MD5 c526b7c7dd21b9da8423c61f562bc0db
BLAKE2b-256 19466fd44875e783d71bcc98d2e58592793b412c76c8f02ca90f5fa68986764f

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.36.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.36.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 fc0e57976c1aa035af6281f0330cfb8dd50eee2f63412ecc84d60ff5075d29b7
MD5 9e54c5ab083d07f7e0b50b2296f83597
BLAKE2b-256 a1723dc3e0d189870d984f119b682262b7669de7b786b48ea38ce9e6b137a256

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.36.0-cp39-cp39-macosx_12_0_arm64.whl.

File metadata

  • Download URL: tensorflow_io_gcs_filesystem-0.36.0-cp39-cp39-macosx_12_0_arm64.whl
  • Upload date:
  • Size: 3.4 MB
  • Tags: CPython 3.9, macOS 12.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.36.0-cp39-cp39-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 31806bd7ac2db789161bc720747de22947063265561a4c17be54698fd9780b03
MD5 762478bae64a29b4b3ed33b96ca6bf32
BLAKE2b-256 89b4409919e47d303e785cc8619e4675667eab649d36bd0670a5b597187e3660

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.36.0-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io_gcs_filesystem-0.36.0-cp39-cp39-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 2.5 MB
  • Tags: CPython 3.9, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.36.0-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 0a4437824424a4423cf86162cb8b21b1bec24698194332748b50bb952e62ab9f
MD5 9bfc02e67781325ecd06572f1a0c8122
BLAKE2b-256 e174c84a8f408e1483fe8b91caeffec22da81d4a0f3ed1916233b1572f17e482

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page