Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

To ensure you have a version of TensorFlow that is compatible with TensorFlow-IO, you can specify the tensorflow extra requirement during install:

pip install tensorflow-io[tensorflow]

Similar extras exist for the tensorflow-gpu, tensorflow-cpu and tensorflow-rocm packages.

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.37.0 2.16.x Apr 25, 2024
0.36.0 2.15.x Feb 02, 2024
0.35.0 2.14.x Dec 18, 2023
0.34.0 2.13.x Sep 08, 2023
0.33.0 2.13.x Aug 01, 2023
0.32.0 2.12.x Mar 28, 2023
0.31.0 2.11.x Feb 25, 2023
0.30.0 2.11.x Jan 20, 2023
0.29.0 2.11.x Dec 18, 2022
0.28.0 2.11.x Nov 21, 2022
0.27.0 2.10.x Sep 08, 2022
0.26.0 2.9.x May 17, 2022
0.25.0 2.8.x Apr 19, 2022
0.24.0 2.8.x Feb 04, 2022
0.23.1 2.7.x Dec 15, 2021
0.23.0 2.7.x Dec 14, 2021
0.22.0 2.7.x Nov 10, 2021
0.21.0 2.6.x Sep 12, 2021
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_gcs_filesystem-0.37.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.1 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

tensorflow_io_gcs_filesystem-0.37.0-cp312-cp312-macosx_12_0_arm64.whl (3.5 MB view details)

Uploaded CPython 3.12 macOS 12.0+ ARM64

tensorflow_io_gcs_filesystem-0.37.0-cp312-cp312-macosx_10_14_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.12 macOS 10.14+ x86-64

tensorflow_io_gcs_filesystem-0.37.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

tensorflow_io_gcs_filesystem-0.37.0-cp311-cp311-macosx_12_0_arm64.whl (3.5 MB view details)

Uploaded CPython 3.11 macOS 12.0+ ARM64

tensorflow_io_gcs_filesystem-0.37.0-cp311-cp311-macosx_10_14_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.11 macOS 10.14+ x86-64

tensorflow_io_gcs_filesystem-0.37.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

tensorflow_io_gcs_filesystem-0.37.0-cp310-cp310-macosx_12_0_arm64.whl (3.5 MB view details)

Uploaded CPython 3.10 macOS 12.0+ ARM64

tensorflow_io_gcs_filesystem-0.37.0-cp310-cp310-macosx_10_14_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

tensorflow_io_gcs_filesystem-0.37.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

tensorflow_io_gcs_filesystem-0.37.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

tensorflow_io_gcs_filesystem-0.37.0-cp39-cp39-macosx_12_0_arm64.whl (3.5 MB view details)

Uploaded CPython 3.9 macOS 12.0+ ARM64

tensorflow_io_gcs_filesystem-0.37.0-cp39-cp39-macosx_10_14_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_gcs_filesystem-0.37.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.37.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 03d5598b8007551f4e1391bf85a83a1865e3fa0789beef15a200efaa06a23fb5
MD5 773d08feafafef579fbfbe654e4947ec
BLAKE2b-256 ec411174b6c467b29229938705c343a770c26445d846b8957a42c19d3a906b60

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.37.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.37.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 71ccf64a137efcb2be2627225b4e48110cbf34da39b23c5cc688fe803f2510f1
MD5 799b764167045cecd009dbc41f80716e
BLAKE2b-256 082ccdae4a2f66fca73334e3a2b9c0545ba9b229154fd7b879ad8b7fd51c2b96

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.37.0-cp312-cp312-macosx_12_0_arm64.whl.

File metadata

  • Download URL: tensorflow_io_gcs_filesystem-0.37.0-cp312-cp312-macosx_12_0_arm64.whl
  • Upload date:
  • Size: 3.5 MB
  • Tags: CPython 3.12, macOS 12.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.37.0-cp312-cp312-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 48a8e7aec651bea8db410f6426c6446a56d16a5ab32201a70d8d684c113137b7
MD5 7869de845a3a63dbda2552f0237232cb
BLAKE2b-256 6e0543532075685f4760d2b1b19701a2df15732e4cd6eec3fa81309269959bd1

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.37.0-cp312-cp312-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io_gcs_filesystem-0.37.0-cp312-cp312-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 2.5 MB
  • Tags: CPython 3.12, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.37.0-cp312-cp312-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 57e7af9c81e79bf8fb552985dc8972ac90437d34bd4c1c9019a92a07eb12bc98
MD5 68cb3e1985c61abc05cffe7cf7e0994e
BLAKE2b-256 3e2aa5739ea19d2473a6f365fec8e7e4660f83f429e98262e29f188b820f5cad

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.37.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.37.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 13bc337f2c2db63a39c81c8fd0ececc0c3d5fcf4ce229dfed0b0085a23dd60e9
MD5 8a005366456bfaa91b2d9bc5628c5c1d
BLAKE2b-256 0dfa29322358a87c80e4b2a5fa0f56792d76bb9c26b385452abf4a495ce1ca5a

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.37.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.37.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 af0f79400656bb88bf326d2b8e63aef49c07a0ce8c14c3e2589a62e765d8c21f
MD5 385df59684d923e9ddab171f8d1fccd0
BLAKE2b-256 2140383b141fe26067b3a900b4fc227707f6ed88e91370af5945efb4da97872a

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.37.0-cp311-cp311-macosx_12_0_arm64.whl.

File metadata

  • Download URL: tensorflow_io_gcs_filesystem-0.37.0-cp311-cp311-macosx_12_0_arm64.whl
  • Upload date:
  • Size: 3.5 MB
  • Tags: CPython 3.11, macOS 12.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.37.0-cp311-cp311-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 4ec3c0d0a9d3676a2e74198e3dff66d74c7c34f974257f2176236d0703b31a0e
MD5 acc93f038ff29c37bee7f8ff1af7c745
BLAKE2b-256 72dfc39b261bd93bde1eb3d6ee5c83d318803255bbe7e642ae345ca6f6a55932

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.37.0-cp311-cp311-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io_gcs_filesystem-0.37.0-cp311-cp311-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 2.5 MB
  • Tags: CPython 3.11, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.37.0-cp311-cp311-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 eab6e4c1daf7ddbfef608cd8e2102861021678dfb3f6a7fb3f613db9d6992919
MD5 35dbd7c8641d2ab0234a81f365989dff
BLAKE2b-256 bed0840da58f67e54def2f5634ef4c207824c48a9a0018ffabe29b01816b0922

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.37.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.37.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0e2901bc4a91158fa0a10d37594c8a5efb1445dd5a041b1b5b90f782a5d1b15e
MD5 e66cd9c9612bdf5af62e483f825d572d
BLAKE2b-256 008d0ae26214229e314db511b62fc719d5e70d3de46b0d66b94c14df867c6664

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.37.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.37.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8e5d1ac4d2010e8cdf259918ba1500c942b51b7ed2e549f55b404c1fb52f695d
MD5 f9392397f84e1bf22883b3f65a3731c0
BLAKE2b-256 f8692ee99cfb74bef020ab7ad8dcd2ad812e992d09f2bad0bcf8fbf1e624a411

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.37.0-cp310-cp310-macosx_12_0_arm64.whl.

File metadata

  • Download URL: tensorflow_io_gcs_filesystem-0.37.0-cp310-cp310-macosx_12_0_arm64.whl
  • Upload date:
  • Size: 3.5 MB
  • Tags: CPython 3.10, macOS 12.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.37.0-cp310-cp310-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 677d6d7c84a94a3b27ea5d16633ea09adadef09c2630480e8e94209558828b02
MD5 66db48aacaa2fa7f8f4ada984c939755
BLAKE2b-256 2985311c94bbebe8182a52b70100eac483d948f754d5417b6291b9daecd0faeb

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.37.0-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io_gcs_filesystem-0.37.0-cp310-cp310-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 2.5 MB
  • Tags: CPython 3.10, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.37.0-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 82cc4d8e26fb143fc814ac8ab95fede83363a315f5b62f8ae68312f1aca1cc6e
MD5 b795c9ebd846761c2331df20959fdc0a
BLAKE2b-256 9e628ac9c89c2585f15f53d5b1fa42ed895e54843fca93e6e84b419564c13411

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.37.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.37.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 500ec871a8d59cf78992b7fd4750d86ea3d35e231fb0bea7a7eabcf73abfceeb
MD5 112fd263bda33484c8c558318b3240ad
BLAKE2b-256 443491727e8942ecdcec11fa36ecb02e68530a58d918de83707c21035b4535b6

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.37.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.37.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8385f4fe447812bd8e2e11ef523cf02765319100e5d9e4a9b5a876d4440c900c
MD5 59bf167cb13ceb882bfad08362912595
BLAKE2b-256 1a66992d44e97dbc9243725dbb751ad924275b1d1673abf9aa1b2bb2a250b048

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.37.0-cp39-cp39-macosx_12_0_arm64.whl.

File metadata

  • Download URL: tensorflow_io_gcs_filesystem-0.37.0-cp39-cp39-macosx_12_0_arm64.whl
  • Upload date:
  • Size: 3.5 MB
  • Tags: CPython 3.9, macOS 12.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.37.0-cp39-cp39-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 95bb229e968fca943806c6ac04e81dc4966fc4a36ab83efaa061a4ecb3ea5e85
MD5 5fb3f739dfa0ebc991bdafaad69adc28
BLAKE2b-256 a151362ce65d37d08b02df73d6e65e867827c56031032d7b876669ad0ac87647

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem-0.37.0-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: tensorflow_io_gcs_filesystem-0.37.0-cp39-cp39-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 2.5 MB
  • Tags: CPython 3.9, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for tensorflow_io_gcs_filesystem-0.37.0-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 8d3ad5f30b6dbe09baefdb80e9aa7ff3869c772928b865f8ffc8402be7675a43
MD5 f7c8b023e0c37547b45252916bbd0135
BLAKE2b-256 4f230b3d43e6eb1dc043dfa62e84a650390421f60d44eeeb1834858174304341

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page