Skip to main content

TensorFlow IO

Project description

The author of this package has not provided a project description

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.13.0.dev20200509181114-cp38-cp38-win_amd64.whl (15.8 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.13.0.dev20200509181114-cp38-cp38-manylinux2010_x86_64.whl (20.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.13.0.dev20200509181114-cp38-cp38-macosx_10_13_x86_64.whl (18.0 MB view details)

Uploaded CPython 3.8 macOS 10.13+ x86-64

tensorflow_io_nightly-0.13.0.dev20200509181114-cp37-cp37m-win_amd64.whl (15.8 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.13.0.dev20200509181114-cp37-cp37m-manylinux2010_x86_64.whl (20.9 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.13.0.dev20200509181114-cp37-cp37m-macosx_10_13_x86_64.whl (18.0 MB view details)

Uploaded CPython 3.7m macOS 10.13+ x86-64

tensorflow_io_nightly-0.13.0.dev20200509181114-cp36-cp36m-win_amd64.whl (15.8 MB view details)

Uploaded CPython 3.6m Windows x86-64

tensorflow_io_nightly-0.13.0.dev20200509181114-cp36-cp36m-manylinux2010_x86_64.whl (20.9 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.13.0.dev20200509181114-cp36-cp36m-macosx_10_13_x86_64.whl (18.0 MB view details)

Uploaded CPython 3.6m macOS 10.13+ x86-64

tensorflow_io_nightly-0.13.0.dev20200509181114-cp35-cp35m-win_amd64.whl (15.8 MB view details)

Uploaded CPython 3.5m Windows x86-64

tensorflow_io_nightly-0.13.0.dev20200509181114-cp35-cp35m-manylinux2010_x86_64.whl (20.9 MB view details)

Uploaded CPython 3.5m manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.13.0.dev20200509181114-cp35-cp35m-macosx_10_13_x86_64.whl (18.0 MB view details)

Uploaded CPython 3.5m macOS 10.13+ x86-64

File details

Details for the file tensorflow_io_nightly-0.13.0.dev20200509181114-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.13.0.dev20200509181114-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 c061a2ee0100c02a7b9c82cc123271052fc69b20e3f36e45c537be26befa0614
MD5 b9f40d69d8d5659c26ee8e28af3ce949
BLAKE2b-256 7146d064ed729630138ac306f943ec240d43b73b5fae00fc89e897409e8d9e36

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.13.0.dev20200509181114-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.13.0.dev20200509181114-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 97c1b224ada4cfad5e20b04eb9742bf0d76bd7795338e8e67d82c2caaa12793c
MD5 cd335203451c5d76df26966962331eec
BLAKE2b-256 a2b73665173e3608032d8bc0d04ac0bed28eca3c8b20248cd5ed48c743e7d572

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.13.0.dev20200509181114-cp38-cp38-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.13.0.dev20200509181114-cp38-cp38-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 32dab0823b7a073c1835ad18091e0e40f89a442f8c363a351ed2aa3247e465fd
MD5 2c68007cb80bb056a9385ed27013c092
BLAKE2b-256 fe1ce25bb7353b366d4dd2da0797476e0e5ff17f5e649fe2ccc43b390a877671

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.13.0.dev20200509181114-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.13.0.dev20200509181114-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 49eddfb0a93672a41f94a2ffcf077bb1656605185dbdba22e46cdb936aac82a6
MD5 674a5d749abb6c203deaccb2d6b0ff04
BLAKE2b-256 3dc7c0392590d554ea63491c8ac2add60c28cac0cdf713865d537a26d57948b3

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.13.0.dev20200509181114-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.13.0.dev20200509181114-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 17b398d7f83ead443f43f0ce00865c0bd8bcdefecc2289fd98fe8fe0f73d1944
MD5 8f57fdda6668dd18b0df6db4c5d289fb
BLAKE2b-256 9f3f80774529a9c477dafbe0a434991244b36de65c6ca8b0e12365ab8dc3ab39

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.13.0.dev20200509181114-cp37-cp37m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.13.0.dev20200509181114-cp37-cp37m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 a26c89b216bf9c013f62ff88edffa43450253e7aecc37193a9c58e083360add1
MD5 eb2e2c0f0a9e8b5e05043195bc6b541d
BLAKE2b-256 69e7186f54fb03dd4ce44f608ec51c185186ac746f549204a6f9f423dada5377

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.13.0.dev20200509181114-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.13.0.dev20200509181114-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 1ba3d4e60b88510e6dd782fd1fd0acfcab4433deadcdf45996dfe533843d51b8
MD5 f2659cb44720087687e46cb00665550b
BLAKE2b-256 b81fbbd9d57d416212b4e8d6f80ba4357090b1cf3f6889a60cf1c8df246d7b3b

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.13.0.dev20200509181114-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.13.0.dev20200509181114-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 98656cef0b4759ae80a63d26e4fb7c9ea75e6d9c40b8dcf2f3a556415b46a0a3
MD5 dcac56c5c468b8c1c96f26ca88b61f32
BLAKE2b-256 db3a74da78019556e0a80a48ab2b7f2619f86c900540c828dad1c5c24d9252c2

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.13.0.dev20200509181114-cp36-cp36m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.13.0.dev20200509181114-cp36-cp36m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 dae8ccd1bf96ba4cc2734340c130a6cef15bcc88adb4a9a1bb905281f00d8ce8
MD5 dac5848124d20a927c2ba491ba34213e
BLAKE2b-256 981e7f15d51e02a1707e6097dd28d07df9f4cd9f1184a0381522996151999f50

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.13.0.dev20200509181114-cp35-cp35m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.13.0.dev20200509181114-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 5baf98a77151a332fc146933875e84f1dddbf58f3beb068b7e1b531e8d14f272
MD5 e7d84650645cb5251636c1ce0c56ea42
BLAKE2b-256 43b73e5e62454aeb10bf48031b2c7875a80045c3ae144631196e57e9a389c295

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.13.0.dev20200509181114-cp35-cp35m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.13.0.dev20200509181114-cp35-cp35m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 0a76cb95160694621a6cf1438df6ceaf578e8c4bce31c508c217c8f3a5ceaa52
MD5 eea4a4a69e211b8db356cc5ab7b5ad1d
BLAKE2b-256 ceaefc05dedca35b3cb8ef7b333fa1b1670cc2ea795db7e529c18d1e2483fdf0

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.13.0.dev20200509181114-cp35-cp35m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.13.0.dev20200509181114-cp35-cp35m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 75464e0105ba5f71b5ecb79bb81657809122d11aabe4d4c82e42f808b0ebef78
MD5 9a8dc3f11ade0c88e9b474fa42ef3749
BLAKE2b-256 ce613c2b760854946852e7905abe9bf1a04e00020d68fef9b445142c5632d8eb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page