Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI CRAN License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is the example of Get Started with TensorFlow with data processing replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read MNIST into Dataset
d_train = tfio.IODataset.from_mnist(
    'http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz',
    'http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz').batch(1)

# By default image data is uint8 so convert to float32.
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

model = tf.keras.models.Sequential([
  tf.keras.layers.Flatten(input_shape=(28, 28)),
  tf.keras.layers.Dense(512, activation=tf.nn.relu),
  tf.keras.layers.Dropout(0.2),
  tf.keras.layers.Dense(10, activation=tf.nn.softmax)
])
model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

model.fit(d_train, epochs=5, steps_per_epoch=10000)

Note that in the above example, MNIST database files' URL address are directly passes to tfio.IODataset.from_mnist, the API used to create MNIST Dataset. We are able to do that because tensorflow-io support HTTP file system out of the box. There is no need to download and save files to local directory any more. Note we are also passing the compressed files (gzip) as is, since tensorflow-io is able to detect and uncompress automatically for MNIST dataset if needed.

Please check the official documentation for more detailed usages.

Installation

Python Package

The tensorflow-io Python package could be installed with pip directly:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

R Package

Once the tensorflow-io Python package has beem successfully installed, you can then install the latest stable release of the R package via:

install.packages('tfio')

You can also install the development version from Github via:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below:

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Development

Lint

TensorFlow I/O's code conforms through Bazel Buildifier, Clang Format, Black, and Pyupgrade. The following will check the source code and report any lint issues:

bazel run //tools/lint:check

For Bazel Buildifier and Clang Format, the following will automatically fix and lint errors:

bazel run //tools/lint:lint

Alternatively, if you only want to perform one lint check individually, then you can selectively pass black, pyupgrade, bazel, or clang from the above commands.

For example, check with black only could be done with:

bazel run //tools/lint:check -- black

Fix with Bazel Buildifier or Clang Format could be done with:

bazel run //tools/lint:lint -- bazel clang

Check lint with Black or Pyupgrade for an individual python file could be done with:

bazel run //tools/lint:check -- black pyupgrade -- tensorflow_io/core/python/ops/version_ops.py

Format individual python file with black and pyupgrade could be done with:

bazel run //tools/lint:lint -- black pyupgrade --  tensorflow_io/core/python/ops/version_ops.py

Python

macOS

On macOS Catalina or higher, it is possible to build tensorflow-io with system provided python 3 (3.7.3). Both tensorflow and bazel are needed.

Note Xcode installation is needed as tensorflow-io requires Swift for accessing Apple's native AVFoundation APIs.

Note also there is a bug in macOS's native python 3.7.3 that could be fixed with https://github.com/tensorflow/tensorflow/issues/33183#issuecomment-554701214

# Use following command to check if Xcode is correctly installed:
xcodebuild -version

# macOS's default python3 is 3.7.3
python3 --version

# Install bazel 3.0.0:
curl -OL https://github.com/bazelbuild/bazel/releases/download/3.0.0/bazel-3.0.0-installer-darwin-x86_64.sh
sudo bash -x -e bazel-3.0.0-installer-darwin-x86_64.sh

# Install tensorflow and configure bazel
sudo ./configure.sh

# Build shared libraries
bazel build -s --verbose_failures //tensorflow_io/...

# Once build is complete, shared libraries will be available in
# `bazel-bin/tensorflow_io/core/python/ops/` and it is possible
# to run tests with `pytest`, e.g.:
sudo python3 -m pip install pytest
TFIO_DATAPATH=bazel-bin python3 -m pytest -s -v tests/test_serialization_eager.py

If Xcode is installed, but xcodebuild -version is not showing so, you might need to enable Xcode command line with the command xcode-select -s /Applications/Xcode.app/Contents/Developer. Restart terminal might be required to make the above change effective.

Note from the above the generated shared libraries (.so) are located in bazel-bin directory. When running pytest, TFIO_DATAPATH=bazel-bin has to be passed for shared libraries to be located by python.

Linux

Development of tensorflow-io on Linux is similiar to development on macOS. The required packages are gcc, g++, git, bazel, and python 3. Newer versions of gcc or python than default system installed versions might be required though. For instructions how to configure Visual Studio code to be able to build and debug TensorFlow I/O see https://github.com/tensorflow/io/blob/master/docs/vscode.md

Ubuntu 18.04/20.04

Ubuntu 18.04/20.04 requires gcc/g++, git, and python 3. The following will install dependencies and build the shared libraries on Ubuntu 18.04/20.04:

# Install gcc/g++, git, unzip/curl (for bazel), and python3
sudo apt-get -y -qq update
sudo apt-get -y -qq install gcc g++ git unzip curl python3-pip

# Install Bazel 3.0.0
curl -sSOL https://github.com/bazelbuild/bazel/releases/download/3.0.0/bazel-3.0.0-installer-linux-x86_64.sh
sudo bash -x -e bazel-3.0.0-installer-linux-x86_64.sh

# Upgrade pip
sudo python3 -m pip install -U pip

# Install tensorflow and configure bazel
sudo ./configure.sh

# Build shared libraries
bazel build -s --verbose_failures //tensorflow_io/...

# Once build is complete, shared libraries will be available in
# `bazel-bin/tensorflow_io/core/python/ops/` and it is possible
# to run tests with `pytest`, e.g.:
sudo python3 -m pip install pytest
TFIO_DATAPATH=bazel-bin python3 -m pytest -s -v tests/test_serialization_eager.py
CentOS 8

CentOS 8 requires gcc/g++, git, and python 3. The following will install dependencies and build the shared libraries on CentOS 8:

# Install gcc/g++, git, unzip/which (for bazel), and python3
sudo yum install -y python3 python3-devel gcc gcc-c++ git unzip which

# Install Bazel 3.0.0
curl -sSOL https://github.com/bazelbuild/bazel/releases/download/3.0.0/bazel-3.0.0-installer-linux-x86_64.sh
sudo bash -x -e bazel-3.0.0-installer-linux-x86_64.sh

# Upgrade pip
sudo python3 -m pip install -U pip

# Install tensorflow and configure bazel
sudo ./configure.sh

# Build shared libraries
bazel build -s --verbose_failures //tensorflow_io/...

# Once build is complete, shared libraries will be available in
# `bazel-bin/tensorflow_io/core/python/ops/` and it is possible
# to run tests with `pytest`, e.g.:
sudo python3 -m pip install pytest
TFIO_DATAPATH=bazel-bin python3 -m pytest -s -v tests/test_serialization_eager.py
CentOS 7

On CentOS 7, the default python and gcc version are too old to build tensorflow-io's shared libraries (.so). The gcc provided by Developer Toolset and rh-python36 should be used instead. Also, the libstdc++ has to be linked statically to avoid discrepancy of libstdc++ installed on CentOS vs. newer gcc version by devtoolset.

The following will install bazel, devtoolset-9, rh-python36, and build the shared libraries:

# Install centos-release-scl, then install gcc/g++ (devtoolset), git, and python 3
sudo yum install -y centos-release-scl
sudo yum install -y devtoolset-9 git rh-python36

# Install Bazel 3.0.0
curl -sSOL https://github.com/bazelbuild/bazel/releases/download/3.0.0/bazel-3.0.0-installer-linux-x86_64.sh
sudo bash -x -e bazel-3.0.0-installer-linux-x86_64.sh

# Upgrade pip
scl enable rh-python36 devtoolset-9 \
    'python3 -m pip install -U pip'

# Install tensorflow and configure bazel with rh-python36
scl enable rh-python36 devtoolset-9 \
    './configure.sh'

# Build shared libraries
BAZEL_LINKOPTS="-static-libstdc++ -static-libgcc" BAZEL_LINKLIBS="-lm -l%:libstdc++.a" \
  scl enable rh-python36 devtoolset-9 \
    'bazel build -s --verbose_failures //tensorflow_io/...'

# Once build is complete, shared libraries will be available in
# `bazel-bin/tensorflow_io/core/python/ops/` and it is possible
# to run tests with `pytest`, e.g.:
scl enable rh-python36 devtoolset-9 \
    'python3 -m pip install pytest'
TFIO_DATAPATH=bazel-bin \
  scl enable rh-python36 devtoolset-9 \
    'python3 -m pytest -s -v tests/test_serialization_eager.py'

Python Wheels

It is possible to build python wheels after bazel build is complete with the following command:

python3 setup.py bdist_wheel --data bazel-bin

The whl file is will be available in dist directory. Note the bazel binary directory bazel-bin has to be passed with --data args in order for setup.py to locate the necessary share objects, as bazel-bin is outside of the tensorflow_io package directory.

Alternatively, source install could be done with:

TFIO_DATAPATH=bazel-bin python3 -m pip install .

with TFIO_DATAPATH=bazel-bin passed for the same readon.

Note installing with -e is different from the above. The

TFIO_DATAPATH=bazel-bin python3 -m pip install -e .

will not install shared object automatically even with TFIO_DATAPATH=bazel-bin. Instead, TFIO_DATAPATH=bazel-bin has to be passed everytime the program is run after the install:

TFIO_DATAPATH=bazel-bin python3
# import tensorflow_io as tfio
# ...

Docker

For Python development, a reference Dockerfile here can be used to build the TensorFlow I/O package (tensorflow-io) from source:

$ # Build and run the Docker image
$ docker build -f tools/dev/Dockerfile -t tfio-dev .
$ docker run -it --rm --net=host -v ${PWD}:/v -w /v tfio-dev
$ # In Docker, configure will install TensorFlow or use existing install
$ ./configure.sh
$ # Build TensorFlow I/O C++. For compilation optimization flags, the default (-march=native) optimizes the generated code for your machine's CPU type. [see here](https://www.tensorflow.org/install/source#configuration_options)
$ bazel build -c opt --copt=-march=native --copt=-fPIC -s --verbose_failures //tensorflow_io/...
$ # Run tests with PyTest, note: some tests require launching additional containers to run (see below)
$ pytest -s -v tests/
$ # Build the TensorFlow I/O package
$ python setup.py bdist_wheel

A package file dist/tensorflow_io-*.whl will be generated after a build is successful.

NOTE: When working in the Python development container, an environment variable TFIO_DATAPATH is automatically set to point tensorflow-io to the shared C++ libraries built by Bazel to run pytest and build the bdist_wheel. Python setup.py can also accept --data [path] as an argument, for example python setup.py --data bazel-bin bdist_wheel.

NOTE: While the tfio-dev container gives developers an easy to work with environment, the released whl packages are build differently due to manylinux2010 requirements. Please check [Build Status and CI] section for more details on how the released whl packages are generated.

Starting Test Containers

Some tests require launching a test container before running. In order to run all tests, execute the following commands:

$ bash -x -e tests/test_ignite/start_ignite.sh
$ bash -x -e tests/test_kafka/kafka_test.sh start kafka
$ bash -x -e tests/test_kinesis/kinesis_test.sh start kinesis

R

We provide a reference Dockerfile here for you so that you can use the R package directly for testing. You can build it via:

docker build -t tfio-r-dev -f R-package/scripts/Dockerfile .

Inside the container, you can start your R session, instantiate a SequenceFileDataset from an example Hadoop SequenceFile string.seq, and then use any transformation functions provided by tfdatasets package on the dataset like the following:

library(tfio)
dataset <- sequence_file_dataset("R-package/tests/testthat/testdata/string.seq") %>%
    dataset_repeat(2)

sess <- tf$Session()
iterator <- make_iterator_one_shot(dataset)
next_batch <- iterator_get_next(iterator)

until_out_of_range({
  batch <- sess$run(next_batch)
  print(batch)
})

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see contribution guidelines for a guide on how to contribute.

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used though the script expect python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python version to ensure a good coverage:

Python Ubuntu 16.04 Ubuntu 18.04 macOS + osx9
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.5 :heavy_check_mark: N/A :heavy_check_mark:
3.6 N/A :heavy_check_mark: :heavy_check_mark:
3.7 N/A :heavy_check_mark: N/A

TensorFlow I/O has integrations with may systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Inite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added

Note:

Community

More Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.13.0.dev20200609162841-cp38-cp38-win_amd64.whl (16.2 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.13.0.dev20200609162841-cp38-cp38-manylinux2010_x86_64.whl (21.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.13.0.dev20200609162841-cp38-cp38-macosx_10_13_x86_64.whl (18.4 MB view details)

Uploaded CPython 3.8 macOS 10.13+ x86-64

tensorflow_io_nightly-0.13.0.dev20200609162841-cp37-cp37m-win_amd64.whl (16.2 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.13.0.dev20200609162841-cp37-cp37m-manylinux2010_x86_64.whl (21.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.13.0.dev20200609162841-cp37-cp37m-macosx_10_13_x86_64.whl (18.4 MB view details)

Uploaded CPython 3.7m macOS 10.13+ x86-64

tensorflow_io_nightly-0.13.0.dev20200609162841-cp36-cp36m-win_amd64.whl (16.2 MB view details)

Uploaded CPython 3.6m Windows x86-64

tensorflow_io_nightly-0.13.0.dev20200609162841-cp36-cp36m-manylinux2010_x86_64.whl (21.3 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.13.0.dev20200609162841-cp36-cp36m-macosx_10_13_x86_64.whl (18.4 MB view details)

Uploaded CPython 3.6m macOS 10.13+ x86-64

tensorflow_io_nightly-0.13.0.dev20200609162841-cp35-cp35m-win_amd64.whl (16.2 MB view details)

Uploaded CPython 3.5m Windows x86-64

tensorflow_io_nightly-0.13.0.dev20200609162841-cp35-cp35m-manylinux2010_x86_64.whl (21.3 MB view details)

Uploaded CPython 3.5m manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.13.0.dev20200609162841-cp35-cp35m-macosx_10_13_x86_64.whl (18.4 MB view details)

Uploaded CPython 3.5m macOS 10.13+ x86-64

File details

Details for the file tensorflow_io_nightly-0.13.0.dev20200609162841-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.13.0.dev20200609162841-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 bf6e754bb250b27e0812c8a6806dd4e71dd3cdd2e5505ed49f30f4338e0dac21
MD5 e0ed4288393f30762ccd918f6a39cedb
BLAKE2b-256 e1069afe1097ecb3062dfcb95b3fb47585081795f99eec95b3b37cbcdd15afd7

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.13.0.dev20200609162841-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.13.0.dev20200609162841-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 0c411264a67c09006c770d2c9f1127f39f3f61a3e7e318eeb2e79d63340776a2
MD5 25d3150aa95b9da2c8a6996b3fdd8045
BLAKE2b-256 37a8f0324267909feb5b68a343b98dc1a4e7ee4964193952b5355b9904b517c7

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.13.0.dev20200609162841-cp38-cp38-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.13.0.dev20200609162841-cp38-cp38-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 0ba12d84a45da111cdb2b5906deda3fbf13ea36e4c38394c762d32849dba344b
MD5 024ea4a215be7fcb22475e817aca5ca6
BLAKE2b-256 b6640d6083a0edf12e004cc3f1224fbf35d69f5aa44d0a9d2fd4ac20e35f00ce

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.13.0.dev20200609162841-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.13.0.dev20200609162841-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 20d0d0828141bcc8eba3a5b559432401b4b596c4f228652e7dc49fff5d004132
MD5 c68fb7baf78787169e0e47a22398eb4f
BLAKE2b-256 3d30100ed36a755f012567a45139e056439644af0165f9386622ac7bcc49f0c9

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.13.0.dev20200609162841-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.13.0.dev20200609162841-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 9eb8145885fe06fe8b103ae33c39f867e53150a87fbe56a6689585c2fd28550e
MD5 04059b382d4aed46c9f5152e011f86d5
BLAKE2b-256 61981f469bcdffdc557c282b3f0b917d61b7eb97d3861ef6cb4edfd7435faf1c

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.13.0.dev20200609162841-cp37-cp37m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.13.0.dev20200609162841-cp37-cp37m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 8b2e748479ba2619371d0ad8a22c480c078955239c3df10dd0b62611dd07b083
MD5 631400d5260aba54dc52ab0c798253e9
BLAKE2b-256 9ee429b61f23eefcfe9b31bebd20b291eda7f5bc671ad716638b69a9fe241b5b

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.13.0.dev20200609162841-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.13.0.dev20200609162841-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 e8907f8d04ac66f74967fe700b1a44c035c8a3eca800a08378cdd6508e0dac43
MD5 06a74a206b2360d84de689acf6f212e2
BLAKE2b-256 c918fcbe3ad064254085303c61872f50c24bd8ca9ddf6788f99e43ae1bbad753

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.13.0.dev20200609162841-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.13.0.dev20200609162841-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 bcbdd7ba7706ebf18b276e934b7af348f9ff9ed32dc5d31bd39203c1f36f7b73
MD5 8f12939d8de8b1e370ad99921be369d2
BLAKE2b-256 fd59bcea9999bc2ed50e6738ff1536bb1625eb2834ee423a54c6a889f7e3569b

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.13.0.dev20200609162841-cp36-cp36m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.13.0.dev20200609162841-cp36-cp36m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 9591b43d3b81458f58bedd7f345089c3043765c12f310cf0633ff63de5dcc92d
MD5 1ef7da4da930ff393abccec53b5dbc43
BLAKE2b-256 294a7a80d87b6d2985d4c796b857e12a2d76ca4652f618442a1dc8ce5e87f4e8

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.13.0.dev20200609162841-cp35-cp35m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.13.0.dev20200609162841-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 aa69bd61d587f0ad2996fb688c792b892a25b39ff072d5289e9570435803d968
MD5 73766aa4906ff5e20eafe512d9b37d55
BLAKE2b-256 b2d1e092c3b5ee2fd49decc2af66a105580b163a068ca8cff5696f8c11275d78

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.13.0.dev20200609162841-cp35-cp35m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.13.0.dev20200609162841-cp35-cp35m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 c009e3b8f9bbc70a2b52ffb52a2c9a16b1054cd4179b0c6d82bca0fc98c1132a
MD5 c4f47b150c234eb6adea5f85092cc9d0
BLAKE2b-256 8ffd6d6f739e3ac84f3ad96b05c627d320f2cdaa3af529e0fea97c40c687e09e

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.13.0.dev20200609162841-cp35-cp35m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.13.0.dev20200609162841-cp35-cp35m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 d1f13ed602b6a80d471ca7617c030a43b2ce5c64010756062093efd53647d2a1
MD5 962636f1665e62e0b8bf9aaf5deb826a
BLAKE2b-256 b480a4b48f4ebc6a83f3e5c74c72be525158dbd8633b5ee6e888b98b91bce72a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page