Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI CRAN License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is the example of Get Started with TensorFlow with data processing replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read MNIST into Dataset
d_train = tfio.IODataset.from_mnist(
    'http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz',
    'http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz').batch(1)

# By default image data is uint8 so convert to float32.
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

model = tf.keras.models.Sequential([
  tf.keras.layers.Flatten(input_shape=(28, 28)),
  tf.keras.layers.Dense(512, activation=tf.nn.relu),
  tf.keras.layers.Dropout(0.2),
  tf.keras.layers.Dense(10, activation=tf.nn.softmax)
])
model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

model.fit(d_train, epochs=5, steps_per_epoch=10000)

Note that in the above example, MNIST database files' URL address are directly passes to tfio.IODataset.from_mnist, the API used to create MNIST Dataset. We are able to do that because tensorflow-io support HTTP file system out of the box. There is no need to download and save files to local directory any more. Note we are also passing the compressed files (gzip) as is, since tensorflow-io is able to detect and uncompress automatically for MNIST dataset if needed.

Please check the official documentation for more detailed usages.

Installation

Python Package

The tensorflow-io Python package could be installed with pip directly:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

R Package

Once the tensorflow-io Python package has beem successfully installed, you can then install the latest stable release of the R package via:

install.packages('tfio')

You can also install the development version from Github via:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below:

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Development

Lint

TensorFlow I/O's code conforms through Bazel Buildifier, Clang Format, Black, and Pyupgrade. The following will check the source code and report any lint issues:

bazel run //tools/lint:check

For Bazel Buildifier and Clang Format, the following will automatically fix and lint errors:

bazel run //tools/lint:lint

Alternatively, if you only want to perform one lint check individually, then you can selectively pass black, pyupgrade, bazel, or clang from the above commands.

For example, check with black only could be done with:

bazel run //tools/lint:check -- black

Fix with Bazel Buildifier or Clang Format could be done with:

bazel run //tools/lint:lint -- bazel clang

Check lint with Black or Pyupgrade for an individual python file could be done with:

bazel run //tools/lint:check -- black pyupgrade -- tensorflow_io/core/python/ops/version_ops.py

Format individual python file with black and pyupgrade could be done with:

bazel run //tools/lint:lint -- black pyupgrade --  tensorflow_io/core/python/ops/version_ops.py

Python

macOS

On macOS Catalina or higher, it is possible to build tensorflow-io with system provided python 3 (3.7.3). Both tensorflow and bazel are needed.

Note Xcode installation is needed as tensorflow-io requires Swift for accessing Apple's native AVFoundation APIs.

Note also there is a bug in macOS's native python 3.7.3 that could be fixed with https://github.com/tensorflow/tensorflow/issues/33183#issuecomment-554701214

# Use following command to check if Xcode is correctly installed:
xcodebuild -version

# macOS's default python3 is 3.7.3
python3 --version

# Install bazel 3.0.0:
curl -OL https://github.com/bazelbuild/bazel/releases/download/3.0.0/bazel-3.0.0-installer-darwin-x86_64.sh
sudo bash -x -e bazel-3.0.0-installer-darwin-x86_64.sh

# Install tensorflow and configure bazel
sudo ./configure.sh

# Build shared libraries
bazel build -s --verbose_failures //tensorflow_io/...

# Once build is complete, shared libraries will be available in
# `bazel-bin/tensorflow_io/core/python/ops/` and it is possible
# to run tests with `pytest`, e.g.:
sudo python3 -m pip install pytest
TFIO_DATAPATH=bazel-bin python3 -m pytest -s -v tests/test_serialization_eager.py

If Xcode is installed, but xcodebuild -version is not showing so, you might need to enable Xcode command line with the command xcode-select -s /Applications/Xcode.app/Contents/Developer. Restart terminal might be required to make the above change effective.

Note from the above the generated shared libraries (.so) are located in bazel-bin directory. When running pytest, TFIO_DATAPATH=bazel-bin has to be passed for shared libraries to be located by python.

Linux

Development of tensorflow-io on Linux is similiar to development on macOS. The required packages are gcc, g++, git, bazel, and python 3. Newer versions of gcc or python than default system installed versions might be required though. For instructions how to configure Visual Studio code to be able to build and debug TensorFlow I/O see https://github.com/tensorflow/io/blob/master/docs/vscode.md

Ubuntu 18.04/20.04

Ubuntu 18.04/20.04 requires gcc/g++, git, and python 3. The following will install dependencies and build the shared libraries on Ubuntu 18.04/20.04:

# Install gcc/g++, git, unzip/curl (for bazel), and python3
sudo apt-get -y -qq update
sudo apt-get -y -qq install gcc g++ git unzip curl python3-pip

# Install Bazel 3.0.0
curl -sSOL https://github.com/bazelbuild/bazel/releases/download/3.0.0/bazel-3.0.0-installer-linux-x86_64.sh
sudo bash -x -e bazel-3.0.0-installer-linux-x86_64.sh

# Upgrade pip
sudo python3 -m pip install -U pip

# Install tensorflow and configure bazel
sudo ./configure.sh

# Build shared libraries
bazel build -s --verbose_failures //tensorflow_io/...

# Once build is complete, shared libraries will be available in
# `bazel-bin/tensorflow_io/core/python/ops/` and it is possible
# to run tests with `pytest`, e.g.:
sudo python3 -m pip install pytest
TFIO_DATAPATH=bazel-bin python3 -m pytest -s -v tests/test_serialization_eager.py
CentOS 8

CentOS 8 requires gcc/g++, git, and python 3. The following will install dependencies and build the shared libraries on CentOS 8:

# Install gcc/g++, git, unzip/which (for bazel), and python3
sudo yum install -y python3 python3-devel gcc gcc-c++ git unzip which

# Install Bazel 3.0.0
curl -sSOL https://github.com/bazelbuild/bazel/releases/download/3.0.0/bazel-3.0.0-installer-linux-x86_64.sh
sudo bash -x -e bazel-3.0.0-installer-linux-x86_64.sh

# Upgrade pip
sudo python3 -m pip install -U pip

# Install tensorflow and configure bazel
sudo ./configure.sh

# Build shared libraries
bazel build -s --verbose_failures //tensorflow_io/...

# Once build is complete, shared libraries will be available in
# `bazel-bin/tensorflow_io/core/python/ops/` and it is possible
# to run tests with `pytest`, e.g.:
sudo python3 -m pip install pytest
TFIO_DATAPATH=bazel-bin python3 -m pytest -s -v tests/test_serialization_eager.py
CentOS 7

On CentOS 7, the default python and gcc version are too old to build tensorflow-io's shared libraries (.so). The gcc provided by Developer Toolset and rh-python36 should be used instead. Also, the libstdc++ has to be linked statically to avoid discrepancy of libstdc++ installed on CentOS vs. newer gcc version by devtoolset.

The following will install bazel, devtoolset-9, rh-python36, and build the shared libraries:

# Install centos-release-scl, then install gcc/g++ (devtoolset), git, and python 3
sudo yum install -y centos-release-scl
sudo yum install -y devtoolset-9 git rh-python36

# Install Bazel 3.0.0
curl -sSOL https://github.com/bazelbuild/bazel/releases/download/3.0.0/bazel-3.0.0-installer-linux-x86_64.sh
sudo bash -x -e bazel-3.0.0-installer-linux-x86_64.sh

# Upgrade pip
scl enable rh-python36 devtoolset-9 \
    'python3 -m pip install -U pip'

# Install tensorflow and configure bazel with rh-python36
scl enable rh-python36 devtoolset-9 \
    './configure.sh'

# Build shared libraries
BAZEL_LINKOPTS="-static-libstdc++ -static-libgcc" BAZEL_LINKLIBS="-lm -l%:libstdc++.a" \
  scl enable rh-python36 devtoolset-9 \
    'bazel build -s --verbose_failures //tensorflow_io/...'

# Once build is complete, shared libraries will be available in
# `bazel-bin/tensorflow_io/core/python/ops/` and it is possible
# to run tests with `pytest`, e.g.:
scl enable rh-python36 devtoolset-9 \
    'python3 -m pip install pytest'
TFIO_DATAPATH=bazel-bin \
  scl enable rh-python36 devtoolset-9 \
    'python3 -m pytest -s -v tests/test_serialization_eager.py'

Python Wheels

It is possible to build python wheels after bazel build is complete with the following command:

python3 setup.py bdist_wheel --data bazel-bin

The whl file is will be available in dist directory. Note the bazel binary directory bazel-bin has to be passed with --data args in order for setup.py to locate the necessary share objects, as bazel-bin is outside of the tensorflow_io package directory.

Alternatively, source install could be done with:

TFIO_DATAPATH=bazel-bin python3 -m pip install .

with TFIO_DATAPATH=bazel-bin passed for the same readon.

Note installing with -e is different from the above. The

TFIO_DATAPATH=bazel-bin python3 -m pip install -e .

will not install shared object automatically even with TFIO_DATAPATH=bazel-bin. Instead, TFIO_DATAPATH=bazel-bin has to be passed everytime the program is run after the install:

TFIO_DATAPATH=bazel-bin python3
# import tensorflow_io as tfio
# ...

Docker

For Python development, a reference Dockerfile here can be used to build the TensorFlow I/O package (tensorflow-io) from source:

$ # Build and run the Docker image
$ docker build -f tools/dev/Dockerfile -t tfio-dev .
$ docker run -it --rm --net=host -v ${PWD}:/v -w /v tfio-dev
$ # In Docker, configure will install TensorFlow or use existing install
$ ./configure.sh
$ # Build TensorFlow I/O C++. For compilation optimization flags, the default (-march=native) optimizes the generated code for your machine's CPU type. [see here](https://www.tensorflow.org/install/source#configuration_options)
$ bazel build -c opt --copt=-march=native --copt=-fPIC -s --verbose_failures //tensorflow_io/...
$ # Run tests with PyTest, note: some tests require launching additional containers to run (see below)
$ pytest -s -v tests/
$ # Build the TensorFlow I/O package
$ python setup.py bdist_wheel

A package file dist/tensorflow_io-*.whl will be generated after a build is successful.

NOTE: When working in the Python development container, an environment variable TFIO_DATAPATH is automatically set to point tensorflow-io to the shared C++ libraries built by Bazel to run pytest and build the bdist_wheel. Python setup.py can also accept --data [path] as an argument, for example python setup.py --data bazel-bin bdist_wheel.

NOTE: While the tfio-dev container gives developers an easy to work with environment, the released whl packages are build differently due to manylinux2010 requirements. Please check [Build Status and CI] section for more details on how the released whl packages are generated.

Starting Test Containers

Some tests require launching a test container before running. In order to run all tests, execute the following commands:

$ bash -x -e tests/test_ignite/start_ignite.sh
$ bash -x -e tests/test_kafka/kafka_test.sh start kafka
$ bash -x -e tests/test_kinesis/kinesis_test.sh start kinesis

R

We provide a reference Dockerfile here for you so that you can use the R package directly for testing. You can build it via:

docker build -t tfio-r-dev -f R-package/scripts/Dockerfile .

Inside the container, you can start your R session, instantiate a SequenceFileDataset from an example Hadoop SequenceFile string.seq, and then use any transformation functions provided by tfdatasets package on the dataset like the following:

library(tfio)
dataset <- sequence_file_dataset("R-package/tests/testthat/testdata/string.seq") %>%
    dataset_repeat(2)

sess <- tf$Session()
iterator <- make_iterator_one_shot(dataset)
next_batch <- iterator_get_next(iterator)

until_out_of_range({
  batch <- sess$run(next_batch)
  print(batch)
})

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see contribution guidelines for a guide on how to contribute.

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used though the script expect python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python version to ensure a good coverage:

Python Ubuntu 16.04 Ubuntu 18.04 macOS + osx9
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.5 :heavy_check_mark: N/A :heavy_check_mark:
3.6 N/A :heavy_check_mark: :heavy_check_mark:
3.7 N/A :heavy_check_mark: N/A

TensorFlow I/O has integrations with may systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Inite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added

Note:

Community

More Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.13.0.dev20200707215131-cp38-cp38-win_amd64.whl (16.9 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.13.0.dev20200707215131-cp38-cp38-manylinux2010_x86_64.whl (21.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.13.0.dev20200707215131-cp38-cp38-macosx_10_13_x86_64.whl (18.9 MB view details)

Uploaded CPython 3.8 macOS 10.13+ x86-64

tensorflow_io_nightly-0.13.0.dev20200707215131-cp37-cp37m-win_amd64.whl (16.9 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.13.0.dev20200707215131-cp37-cp37m-manylinux2010_x86_64.whl (21.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.13.0.dev20200707215131-cp37-cp37m-macosx_10_13_x86_64.whl (18.9 MB view details)

Uploaded CPython 3.7m macOS 10.13+ x86-64

tensorflow_io_nightly-0.13.0.dev20200707215131-cp36-cp36m-win_amd64.whl (16.9 MB view details)

Uploaded CPython 3.6m Windows x86-64

tensorflow_io_nightly-0.13.0.dev20200707215131-cp36-cp36m-manylinux2010_x86_64.whl (21.8 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.13.0.dev20200707215131-cp36-cp36m-macosx_10_13_x86_64.whl (18.9 MB view details)

Uploaded CPython 3.6m macOS 10.13+ x86-64

tensorflow_io_nightly-0.13.0.dev20200707215131-cp35-cp35m-win_amd64.whl (16.9 MB view details)

Uploaded CPython 3.5m Windows x86-64

tensorflow_io_nightly-0.13.0.dev20200707215131-cp35-cp35m-manylinux2010_x86_64.whl (21.8 MB view details)

Uploaded CPython 3.5m manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.13.0.dev20200707215131-cp35-cp35m-macosx_10_13_x86_64.whl (18.9 MB view details)

Uploaded CPython 3.5m macOS 10.13+ x86-64

File details

Details for the file tensorflow_io_nightly-0.13.0.dev20200707215131-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.13.0.dev20200707215131-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 9d6f4bdd87cb63e277363ebafe1a8608ecec5ab6ef808889f69b452193346a34
MD5 49c3a665549e92648a37e0e3f83c8420
BLAKE2b-256 7db6259a7858e4e727b12f380cd03fe593bc878e468f703a997261a63a09bceb

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.13.0.dev20200707215131-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.13.0.dev20200707215131-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 a2692ccde51278d051af9c73d31f0e06fc462ecba523cf1ae3da295b25825e16
MD5 8b7b31d55f3027a2c6e4ffaf34ff551c
BLAKE2b-256 a45db5021dd640331db8b7ea12bccbdd0e79bf5ea096d156b63e654c66e4ac6b

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.13.0.dev20200707215131-cp38-cp38-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.13.0.dev20200707215131-cp38-cp38-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 1f510074e7c86f330c02a29ae4839f3e228e1b6172d19c2ef1b138aff1475b50
MD5 c55a1d2c25ae5a95f95b0a2f0e674ea9
BLAKE2b-256 8d2de71492b40e90beb8f1b664bd0ab61bc60f4054b772b7ce381c30906a7e65

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.13.0.dev20200707215131-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.13.0.dev20200707215131-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 e0c39451faf7daa0bc2e1fefe2b15eebe551adc1996bfd72e6fd88214ea61eeb
MD5 9f5e4f997c04da65eab82071e7c85ce0
BLAKE2b-256 e8afaebec368b1c3191764093168392042227a29f88831e9a96a7fe2be8af6c2

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.13.0.dev20200707215131-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.13.0.dev20200707215131-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 76bc5de365bddd543cdb82b979995e169c5013a2a60210bc7a7449ecee8c1254
MD5 53e1130ed119b646776d217e7c932cfb
BLAKE2b-256 2aa4e33cb0b327c564115baf31fcab42a48d0fd4a015b465a5e22ee8cfb70b25

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.13.0.dev20200707215131-cp37-cp37m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.13.0.dev20200707215131-cp37-cp37m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 935e3352b4a43ae0f7d1f844dfc589c81700adfae9c15985fccc9e0d453d5036
MD5 3d15ee952eb8e3a355850b4910a03c0d
BLAKE2b-256 8527aa53fa96f69b239716c7c7416073810842a09d77ff2cf260792b8dc128af

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.13.0.dev20200707215131-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.13.0.dev20200707215131-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 68620a4613ba8a6733dff69607e5ca94f307320f5222ab0c558c36eac85ac464
MD5 1322af801832b573dab2736a4dec6867
BLAKE2b-256 29f95de32979617b6c32754f7f528323485c022592cb99323b037d82d49b0965

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.13.0.dev20200707215131-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.13.0.dev20200707215131-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 6e6eeb5565f9b99b0a4428b2426fcf55a59e9a2f3d05fc4459219f80714b1b2a
MD5 2d99c7471df6765aa330f4e8a1384c1a
BLAKE2b-256 ac9183e3ab3b9ab10521b84cb55af05c1881a3a49afc14e4006a954768efdbc9

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.13.0.dev20200707215131-cp36-cp36m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.13.0.dev20200707215131-cp36-cp36m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 3e9f9dad97ea45d6a850ef0e1129060e6f49685645945969bbd49f443cd61924
MD5 28e7153d2f745166f8c53348e1e05263
BLAKE2b-256 1430487e42a3794b6609c6a306281b15b22000135163c58f789543dfd2b65428

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.13.0.dev20200707215131-cp35-cp35m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.13.0.dev20200707215131-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 1c5c63bf8a993cbbfe8f678394d4860f9bd27f01c95e93df498346b604771765
MD5 15bc66e4b74ddc1e4b3ec4030bb38e28
BLAKE2b-256 d9559f4e9f702416eeac62363afb8ff7f89bcaf1045cda35ae4b5af934878267

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.13.0.dev20200707215131-cp35-cp35m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.13.0.dev20200707215131-cp35-cp35m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 de45ae10862543b4705c1cb2acb62c1345705a9e4c45569fc5a7c3aa6e78cc79
MD5 55a0df5804ae88da761e9e8b0e651068
BLAKE2b-256 384800f4e960786d28f47034edc08ab0e7c5f510680cc2b9ad55478ab6bfe1f5

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.13.0.dev20200707215131-cp35-cp35m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.13.0.dev20200707215131-cp35-cp35m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 01f1555fd6d106f102d00b0d1321121aeb0d5b367ac461bd98bb61edf5f3c981
MD5 69da9c1be73323084d5b8ed73734d07c
BLAKE2b-256 4e42b87e7fcd088b8756e9e8824becfc5581ab483e8f17dd5cda41dd415d1db2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page