Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI CRAN License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read MNIST into Dataset
d_train = tfio.IODataset.from_mnist(
    'http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz',
    'http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz').batch(1)

# By default image data is uint8 so convert to float32.
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

model = tf.keras.models.Sequential([
  tf.keras.layers.Flatten(input_shape=(28, 28)),
  tf.keras.layers.Dense(512, activation=tf.nn.relu),
  tf.keras.layers.Dropout(0.2),
  tf.keras.layers.Dense(10, activation=tf.nn.softmax)
])
model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

model.fit(d_train, epochs=5, steps_per_epoch=10000)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for the HTTP file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can then install the latest stable release of the R package via:

install.packages('tfio')

You can also install the development version from Github via:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below:

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Development

IDE Setup

For instructions on how to configure Visual Studio Code for developing TensorFlow I/O, please refer to https://github.com/tensorflow/io/blob/master/docs/vscode.md

Lint

TensorFlow I/O's code conforms to Bazel Buildifier, Clang Format, Black, and Pyupgrade. Please use the following command to check the source code and identify lint issues:

$ bazel run //tools/lint:check

For Bazel Buildifier and Clang Format, the following command will automatically identify and fix any lint errors:

$ bazel run //tools/lint:lint

Alternatively, if you only want to perform lint check using individual linters, then you can selectively pass black, pyupgrade, bazel, or clang to the above commands.

For example, a black specific lint check can be done using:

$ bazel run //tools/lint:check -- black

Lint fix using Bazel Buildifier and Clang Format can be done using:

$ bazel run //tools/lint:lint -- bazel clang

Lint check using black and pyupgrade for an individual python file can be done using:

$ bazel run //tools/lint:check -- black pyupgrade -- tensorflow_io/core/python/ops/version_ops.py

Lint fix an individual python file with black and pyupgrade using:

$ bazel run //tools/lint:lint -- black pyupgrade --  tensorflow_io/core/python/ops/version_ops.py

Python

macOS

On macOS Catalina or higher, it is possible to build tensorflow-io with system provided python 3 (3.7.3). Both tensorflow and bazel are needed.

NOTE: Xcode installation is needed as tensorflow-io requires Swift for accessing Apple's native AVFoundation APIs. Also there is a bug in macOS's native python 3.7.3 that could be fixed with https://github.com/tensorflow/tensorflow/issues/33183#issuecomment-554701214

#!/usr/bin/env bash

# Use following command to check if Xcode is correctly installed:
xcodebuild -version

# macOS's default python3 is 3.7.3
python3 --version

# Install bazel 3.0.0:
curl -OL https://github.com/bazelbuild/bazel/releases/download/3.0.0/bazel-3.0.0-installer-darwin-x86_64.sh
sudo bash -x -e bazel-3.0.0-installer-darwin-x86_64.sh

# Install tensorflow and configure bazel
sudo ./configure.sh

# Build shared libraries
bazel build -s --verbose_failures //tensorflow_io/...

# Once build is complete, shared libraries will be available in
# `bazel-bin/tensorflow_io/core/python/ops/` and it is possible
# to run tests with `pytest`, e.g.:
sudo python3 -m pip install pytest
TFIO_DATAPATH=bazel-bin python3 -m pytest -s -v tests/test_serialization_eager.py

NOTE: When running pytest, TFIO_DATAPATH=bazel-bin has to be passed so that python can utilize the generated shared libraries after the build process.

Troubleshoot

If Xcode is installed, but $ xcodebuild -version is not displaying the expected output, you might need to enable Xcode command line with the command:

$ xcode-select -s /Applications/Xcode.app/Contents/Developer.

A terminal restart might be required for the changes to take effect.

Sample output:

$ xcodebuild -version
Xcode 11.6
Build version 11E708

Linux

Development of tensorflow-io on Linux is similar to macOS. The required packages are gcc, g++, git, bazel, and python 3. Newer versions of gcc or python, other than the default system installed versions might be required though.

Ubuntu 18.04/20.04

Ubuntu 18.04/20.04 requires gcc/g++, git, and python 3. The following will install dependencies and build the shared libraries on Ubuntu 18.04/20.04:

#!/usr/bin/env bash

# Install gcc/g++, git, unzip/curl (for bazel), and python3
sudo apt-get -y -qq update
sudo apt-get -y -qq install gcc g++ git unzip curl python3-pip

# Install Bazel 3.0.0
curl -sSOL https://github.com/bazelbuild/bazel/releases/download/3.0.0/bazel-3.0.0-installer-linux-x86_64.sh
sudo bash -x -e bazel-3.0.0-installer-linux-x86_64.sh

# Upgrade pip
sudo python3 -m pip install -U pip

# Install tensorflow and configure bazel
sudo ./configure.sh

# Build shared libraries
bazel build -s --verbose_failures //tensorflow_io/...

# Once build is complete, shared libraries will be available in
# `bazel-bin/tensorflow_io/core/python/ops/` and it is possible
# to run tests with `pytest`, e.g.:
sudo python3 -m pip install pytest
TFIO_DATAPATH=bazel-bin python3 -m pytest -s -v tests/test_serialization_eager.py
CentOS 8

CentOS 8 requires gcc/g++, git, and python 3. The following will install dependencies and build the shared libraries on CentOS 8:

#!/usr/bin/env bash

# Install gcc/g++, git, unzip/which (for bazel), and python3
sudo yum install -y python3 python3-devel gcc gcc-c++ git unzip which

# Install Bazel 3.0.0
curl -sSOL https://github.com/bazelbuild/bazel/releases/download/3.0.0/bazel-3.0.0-installer-linux-x86_64.sh
sudo bash -x -e bazel-3.0.0-installer-linux-x86_64.sh

# Upgrade pip
sudo python3 -m pip install -U pip

# Install tensorflow and configure bazel
sudo ./configure.sh

# Build shared libraries
bazel build -s --verbose_failures //tensorflow_io/...

# Once build is complete, shared libraries will be available in
# `bazel-bin/tensorflow_io/core/python/ops/` and it is possible
# to run tests with `pytest`, e.g.:
sudo python3 -m pip install pytest
TFIO_DATAPATH=bazel-bin python3 -m pytest -s -v tests/test_serialization_eager.py
CentOS 7

On CentOS 7, the default python and gcc version are too old to build tensorflow-io's shared libraries (.so). The gcc provided by Developer Toolset and rh-python36 should be used instead. Also, the libstdc++ has to be linked statically to avoid discrepancy of libstdc++ installed on CentOS vs. newer gcc version by devtoolset.

The following will install bazel, devtoolset-9, rh-python36, and build the shared libraries:

#!/usr/bin/env bash

# Install centos-release-scl, then install gcc/g++ (devtoolset), git, and python 3
sudo yum install -y centos-release-scl
sudo yum install -y devtoolset-9 git rh-python36

# Install Bazel 3.0.0
curl -sSOL https://github.com/bazelbuild/bazel/releases/download/3.0.0/bazel-3.0.0-installer-linux-x86_64.sh
sudo bash -x -e bazel-3.0.0-installer-linux-x86_64.sh

# Upgrade pip
scl enable rh-python36 devtoolset-9 \
    'python3 -m pip install -U pip'

# Install tensorflow and configure bazel with rh-python36
scl enable rh-python36 devtoolset-9 \
    './configure.sh'

# Build shared libraries
BAZEL_LINKOPTS="-static-libstdc++ -static-libgcc" BAZEL_LINKLIBS="-lm -l%:libstdc++.a" \
  scl enable rh-python36 devtoolset-9 \
    'bazel build -s --verbose_failures //tensorflow_io/...'

# Once build is complete, shared libraries will be available in
# `bazel-bin/tensorflow_io/core/python/ops/` and it is possible
# to run tests with `pytest`, e.g.:
scl enable rh-python36 devtoolset-9 \
    'python3 -m pip install pytest'

TFIO_DATAPATH=bazel-bin \
  scl enable rh-python36 devtoolset-9 \
    'python3 -m pytest -s -v tests/test_serialization_eager.py'

Python Wheels

It is possible to build python wheels after bazel build is complete with the following command:

$ python3 setup.py bdist_wheel --data bazel-bin

The .whl file will be available in dist directory. Note the bazel binary directory bazel-bin has to be passed with --data args in order for setup.py to locate the necessary share objects, as bazel-bin is outside of the tensorflow_io package directory.

Alternatively, source install could be done with:

$ TFIO_DATAPATH=bazel-bin python3 -m pip install .

with TFIO_DATAPATH=bazel-bin passed for the same reason.

Note installing with -e is different from the above. The

$ TFIO_DATAPATH=bazel-bin python3 -m pip install -e .

will not install shared object automatically even with TFIO_DATAPATH=bazel-bin. Instead, TFIO_DATAPATH=bazel-bin has to be passed everytime the program is run after the install:

$ TFIO_DATAPATH=bazel-bin python3

>>> import tensorflow_io as tfio
>>> ...

Docker

For Python development, a reference Dockerfile here can be used to build the TensorFlow I/O package (tensorflow-io) from source:

# Build and run the Docker image
$ docker build -f tools/dev/Dockerfile -t tfio-dev .
$ docker run -it --rm --net=host -v ${PWD}:/v -w /v tfio-dev

# Inside the docker container, ./configure.sh will install TensorFlow or use existing install
(tfio-dev) root@docker-desktop:/v$ ./configure.sh

# Clean up exisiting bazel build's (if any)
(tfio-dev) root@docker-desktop:/v$ rm -rf bazel-*

# Build TensorFlow I/O C++. For compilation optimization flags, the default (-march=native) optimizes the generated code for your machine's CPU type. [see here](https://www.tensorflow.org/install/source#configuration_options). NOTE: Based on the available resources, please change the number of job workers to -j 4/8/16 to prevent bazel server terminations and resource oriented build errors.

(tfio-dev) root@docker-desktop:/v$ bazel build -j 8 --copt=-msse4.2 --copt=-mavx --compilation_mode=opt --verbose_failures --test_output=errors --crosstool_top=//third_party/toolchains/gcc7_manylinux2010:toolchain //tensorflow_io/...


# Run tests with PyTest, note: some tests require launching additional containers to run (see below)
(tfio-dev) root@docker-desktop:/v$ pytest -s -v tests/
 # Build the TensorFlow I/O package
(tfio-dev) root@docker-desktop:/v$ python setup.py bdist_wheel

A package file dist/tensorflow_io-*.whl will be generated after a build is successful.

NOTE: When working in the Python development container, an environment variable TFIO_DATAPATH is automatically set to point tensorflow-io to the shared C++ libraries built by Bazel to run pytest and build the bdist_wheel. Python setup.py can also accept --data [path] as an argument, for example python setup.py --data bazel-bin bdist_wheel.

NOTE: While the tfio-dev container gives developers an easy to work with environment, the released whl packages are build differently due to manylinux2010 requirements. Please check [Build Status and CI] section for more details on how the released whl packages are generated.

Starting Test Containers

Some tests require launching a test container before running. In order to run all tests, execute the following commands:

$ bash -x -e tests/test_ignite/start_ignite.sh
$ bash -x -e tests/test_kafka/kafka_test.sh start kafka
$ bash -x -e tests/test_kinesis/kinesis_test.sh start kinesis

R

We provide a reference Dockerfile here for you so that you can use the R package directly for testing. You can build it via:

$ docker build -t tfio-r-dev -f R-package/scripts/Dockerfile .

Inside the container, you can start your R session, instantiate a SequenceFileDataset from an example Hadoop SequenceFile string.seq, and then use any transformation functions provided by tfdatasets package on the dataset like the following:

library(tfio)
dataset <- sequence_file_dataset("R-package/tests/testthat/testdata/string.seq") %>%
    dataset_repeat(2)

sess <- tf$Session()
iterator <- make_iterator_one_shot(dataset)
next_batch <- iterator_get_next(iterator)

until_out_of_range({
  batch <- sess$run(next_batch)
  print(batch)
})

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see contribution guidelines for a guide on how to contribute.

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used though the script expect python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python version to ensure a good coverage:

Python Ubuntu 16.04 Ubuntu 18.04 macOS + osx9
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.5 :heavy_check_mark: N/A :heavy_check_mark:
3.6 N/A :heavy_check_mark: :heavy_check_mark:
3.7 N/A :heavy_check_mark: N/A

TensorFlow I/O has integrations with may systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added

Note:

Community

More Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.15.0.dev20200724212308-cp38-cp38-win_amd64.whl (17.0 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.15.0.dev20200724212308-cp38-cp38-manylinux2010_x86_64.whl (22.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.15.0.dev20200724212308-cp38-cp38-macosx_10_13_x86_64.whl (19.1 MB view details)

Uploaded CPython 3.8 macOS 10.13+ x86-64

tensorflow_io_nightly-0.15.0.dev20200724212308-cp37-cp37m-win_amd64.whl (17.0 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.15.0.dev20200724212308-cp37-cp37m-manylinux2010_x86_64.whl (22.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.15.0.dev20200724212308-cp37-cp37m-macosx_10_13_x86_64.whl (19.1 MB view details)

Uploaded CPython 3.7m macOS 10.13+ x86-64

tensorflow_io_nightly-0.15.0.dev20200724212308-cp36-cp36m-win_amd64.whl (17.0 MB view details)

Uploaded CPython 3.6m Windows x86-64

tensorflow_io_nightly-0.15.0.dev20200724212308-cp36-cp36m-manylinux2010_x86_64.whl (22.3 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.15.0.dev20200724212308-cp36-cp36m-macosx_10_13_x86_64.whl (19.1 MB view details)

Uploaded CPython 3.6m macOS 10.13+ x86-64

tensorflow_io_nightly-0.15.0.dev20200724212308-cp35-cp35m-win_amd64.whl (17.0 MB view details)

Uploaded CPython 3.5m Windows x86-64

tensorflow_io_nightly-0.15.0.dev20200724212308-cp35-cp35m-manylinux2010_x86_64.whl (22.3 MB view details)

Uploaded CPython 3.5m manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.15.0.dev20200724212308-cp35-cp35m-macosx_10_13_x86_64.whl (19.1 MB view details)

Uploaded CPython 3.5m macOS 10.13+ x86-64

File details

Details for the file tensorflow_io_nightly-0.15.0.dev20200724212308-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.15.0.dev20200724212308-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 d13b4c35e8d1b71d18b3534d37cf2c3848d09bffb08c610a564e41fba6f336f8
MD5 f9f7101d866d200604debb300b7f991e
BLAKE2b-256 c0da87962ba45746194365f098982e4339762bf84a7d862d8b37218921e6fb9d

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.15.0.dev20200724212308-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.15.0.dev20200724212308-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 3c0005672e51406d106fb133693553e23dd5d5c34503a95abcd5e215a14fff58
MD5 73f328f885296e57361e5e184a7454b5
BLAKE2b-256 6359656094ef93eb6c52077dc9f0321288020efc60afe0a7164d65d73b97e7e2

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.15.0.dev20200724212308-cp38-cp38-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.15.0.dev20200724212308-cp38-cp38-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 c7ed13ebf12eaf2292774a2612485d55d03f5e5d5f9f3249320890ba83e43bb7
MD5 063176e5d9a101954e202ffeaab82404
BLAKE2b-256 f935e5ba45008e50abd23fb2f7313e5535239331a062d4dca0a91ae8b0f2b99a

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.15.0.dev20200724212308-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.15.0.dev20200724212308-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 144710ead88207c4b66bdd7f65af3a31a3c2326851c1cc032e5563b089bf3f6f
MD5 2b4588f2139ef66dd331fef72641b59f
BLAKE2b-256 f3f11906eb023290ea71228b51ca53749f9630162579b8d3c25f064152506c4e

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.15.0.dev20200724212308-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.15.0.dev20200724212308-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 3262d6a215321718de1b6978c45aef1fc20b2bbd0c430e1f25b491f5431fcfec
MD5 3ca5944fa62824e013c769d04d1cc8f3
BLAKE2b-256 1fbf999cb487166d7d2594f950214318d06acfecac9042d53eb733af303c3daf

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.15.0.dev20200724212308-cp37-cp37m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.15.0.dev20200724212308-cp37-cp37m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 58bc5a75885b99cabe25660f20e467d0a7701fa2385159b8b56e38b616cf5fa1
MD5 3bdcd1f7085a4c21dd8cbecb6e5eae77
BLAKE2b-256 753ca1d9777d755d882a48ba13c250d2b7dac0db17a5089d5c191a2c5d3864d0

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.15.0.dev20200724212308-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.15.0.dev20200724212308-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 e5642b2fb1455ae504e518775f778e1601751f982852563cfb997b456de908e9
MD5 f55b2112c2382e3cdf6722343fb3e0d7
BLAKE2b-256 7ad4a504cd5b1c52eaa78aa90298e691db5c7c9d9767c797f76840e0e6d61b99

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.15.0.dev20200724212308-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.15.0.dev20200724212308-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 f14a682b22f657efc73603ce3468de14fe557b6fa2f858ba22b8c7e407ae5c61
MD5 ad73a64f4381fbbe137efaf717fda79d
BLAKE2b-256 1fd61612cd15bcc9d2dc0f03a09eea3afafe3f7cc19e9a6e802db9bc8581a094

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.15.0.dev20200724212308-cp36-cp36m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.15.0.dev20200724212308-cp36-cp36m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 639cc43ef4e582ab7bd6f6fbb373459dc45af8978e7ec16c276957bae371e8fe
MD5 bb8f7dd04bc55423edab93efa8fcdaf5
BLAKE2b-256 e9fb1dfc2cd4604207cee2b667c4ad25e99d37f3199c190aa3e60e646bac52b0

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.15.0.dev20200724212308-cp35-cp35m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.15.0.dev20200724212308-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 dc7f747ed325e5d91944da9845ea98428adbcc21771010bdb0fb23dafbfe56b9
MD5 274fc9f22da0b8d5821e10d5ce3efe11
BLAKE2b-256 3a38427d1016e376016b68fa59418b6de57b9cd319f28a6f02c735042afd9f48

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.15.0.dev20200724212308-cp35-cp35m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.15.0.dev20200724212308-cp35-cp35m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 ed549b6ff14ec4ee3129e27f10055512508d4e779800279b43f8fc88be90db5d
MD5 a570fd1b7787f275ff134ee5b9e1f9ae
BLAKE2b-256 e89bc3fa4b59ed79121e900f84ce16b453d88eb6692b0cd37b65df931a386ca8

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.15.0.dev20200724212308-cp35-cp35m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.15.0.dev20200724212308-cp35-cp35m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 b7f1d1bed60d606aa33bce228c568993043f9ebbfeeee9a66ac2d2035d42c69f
MD5 c0e9be70f005d34722524fc511dc49b7
BLAKE2b-256 0f134b81ba0ed99a00ac44fd29447e11383928cfdc706e3b24425d374f00be58

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page