Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
d_train = tfio.IODataset.from_mnist(
    'http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz',
    'http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz')

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential([
  tf.keras.layers.Flatten(input_shape=(28, 28)),
  tf.keras.layers.Dense(512, activation=tf.nn.relu),
  tf.keras.layers.Dropout(0.2),
  tf.keras.layers.Dense(10, activation=tf.nn.softmax)
])

# Compile the model.
model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for the HTTP file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Development

IDE Setup

For instructions on how to configure Visual Studio Code for developing TensorFlow I/O, please refer to https://github.com/tensorflow/io/blob/master/docs/vscode.md

Lint

TensorFlow I/O's code conforms to Bazel Buildifier, Clang Format, Black, and Pyupgrade. Please use the following command to check the source code and identify lint issues:

$ bazel run //tools/lint:check

For Bazel Buildifier and Clang Format, the following command will automatically identify and fix any lint errors:

$ bazel run //tools/lint:lint

Alternatively, if you only want to perform lint check using individual linters, then you can selectively pass black, pyupgrade, bazel, or clang to the above commands.

For example, a black specific lint check can be done using:

$ bazel run //tools/lint:check -- black

Lint fix using Bazel Buildifier and Clang Format can be done using:

$ bazel run //tools/lint:lint -- bazel clang

Lint check using black and pyupgrade for an individual python file can be done using:

$ bazel run //tools/lint:check -- black pyupgrade -- tensorflow_io/core/python/ops/version_ops.py

Lint fix an individual python file with black and pyupgrade using:

$ bazel run //tools/lint:lint -- black pyupgrade --  tensorflow_io/core/python/ops/version_ops.py

Python

macOS

On macOS Catalina or higher, it is possible to build tensorflow-io with system provided python 3 (3.7.3). Both tensorflow and bazel are needed.

NOTE: Xcode installation is needed as tensorflow-io requires Swift for accessing Apple's native AVFoundation APIs. Also there is a bug in macOS's native python 3.7.3 that could be fixed with https://github.com/tensorflow/tensorflow/issues/33183#issuecomment-554701214

#!/usr/bin/env bash

# Use following command to check if Xcode is correctly installed:
xcodebuild -version

# macOS's default python3 is 3.7.3
python3 --version

# Install Bazel version specified in .bazelversion
curl -OL https://github.com/bazelbuild/bazel/releases/download/$(cat .bazelversion)/bazel-$(cat .bazelversion)-installer-darwin-x86_64.sh
sudo bash -x -e bazel-$(cat .bazelversion)-installer-darwin-x86_64.sh

# Install tensorflow and configure bazel
sudo ./configure.sh

# Build shared libraries
bazel build -s --verbose_failures //tensorflow_io/...

# Once build is complete, shared libraries will be available in
# `bazel-bin/tensorflow_io/core/python/ops/` and it is possible
# to run tests with `pytest`, e.g.:
sudo python3 -m pip install pytest
TFIO_DATAPATH=bazel-bin python3 -m pytest -s -v tests/test_serialization_eager.py

NOTE: When running pytest, TFIO_DATAPATH=bazel-bin has to be passed so that python can utilize the generated shared libraries after the build process.

Troubleshoot

If Xcode is installed, but $ xcodebuild -version is not displaying the expected output, you might need to enable Xcode command line with the command:

$ xcode-select -s /Applications/Xcode.app/Contents/Developer.

A terminal restart might be required for the changes to take effect.

Sample output:

$ xcodebuild -version
Xcode 11.6
Build version 11E708

Linux

Development of tensorflow-io on Linux is similar to macOS. The required packages are gcc, g++, git, bazel, and python 3. Newer versions of gcc or python, other than the default system installed versions might be required though.

Ubuntu 18.04/20.04

Ubuntu 18.04/20.04 requires gcc/g++, git, and python 3. The following will install dependencies and build the shared libraries on Ubuntu 18.04/20.04:

#!/usr/bin/env bash

# Install gcc/g++, git, unzip/curl (for bazel), and python3
sudo apt-get -y -qq update
sudo apt-get -y -qq install gcc g++ git unzip curl python3-pip

# Install Bazel version specified in .bazelversion
curl -sSOL https://github.com/bazelbuild/bazel/releases/download/$(cat .bazelversion)/bazel-$(cat .bazelversion)-installer-linux-x86_64.sh
sudo bash -x -e bazel-$(cat .bazelversion)-installer-linux-x86_64.sh

# Upgrade pip
sudo python3 -m pip install -U pip

# Install tensorflow and configure bazel
sudo ./configure.sh

# Build shared libraries
bazel build -s --verbose_failures //tensorflow_io/...

# Once build is complete, shared libraries will be available in
# `bazel-bin/tensorflow_io/core/python/ops/` and it is possible
# to run tests with `pytest`, e.g.:
sudo python3 -m pip install pytest
TFIO_DATAPATH=bazel-bin python3 -m pytest -s -v tests/test_serialization_eager.py
CentOS 8

CentOS 8 requires gcc/g++, git, and python 3. The following will install dependencies and build the shared libraries on CentOS 8:

#!/usr/bin/env bash

# Install gcc/g++, git, unzip/which (for bazel), and python3
sudo yum install -y python3 python3-devel gcc gcc-c++ git unzip which

# Install Bazel version specified in .bazelversion
curl -sSOL https://github.com/bazelbuild/bazel/releases/download/$(cat .bazelversion)/bazel-$(cat .bazelversion)-installer-linux-x86_64.sh
sudo bash -x -e bazel-$(cat .bazelversion)-installer-linux-x86_64.sh

# Upgrade pip
sudo python3 -m pip install -U pip

# Install tensorflow and configure bazel
sudo ./configure.sh

# Build shared libraries
bazel build -s --verbose_failures //tensorflow_io/...

# Once build is complete, shared libraries will be available in
# `bazel-bin/tensorflow_io/core/python/ops/` and it is possible
# to run tests with `pytest`, e.g.:
sudo python3 -m pip install pytest
TFIO_DATAPATH=bazel-bin python3 -m pytest -s -v tests/test_serialization_eager.py
CentOS 7

On CentOS 7, the default python and gcc version are too old to build tensorflow-io's shared libraries (.so). The gcc provided by Developer Toolset and rh-python36 should be used instead. Also, the libstdc++ has to be linked statically to avoid discrepancy of libstdc++ installed on CentOS vs. newer gcc version by devtoolset.

The following will install bazel, devtoolset-9, rh-python36, and build the shared libraries:

#!/usr/bin/env bash

# Install centos-release-scl, then install gcc/g++ (devtoolset), git, and python 3
sudo yum install -y centos-release-scl
sudo yum install -y devtoolset-9 git rh-python36

# Install Bazel version specified in .bazelversion
curl -sSOL https://github.com/bazelbuild/bazel/releases/download/$(cat .bazelversion)/bazel-$(cat .bazelversion)-installer-linux-x86_64.sh
sudo bash -x -e bazel-$(cat .bazelversion)-installer-linux-x86_64.sh

# Upgrade pip
scl enable rh-python36 devtoolset-9 \
    'python3 -m pip install -U pip'

# Install tensorflow and configure bazel with rh-python36
scl enable rh-python36 devtoolset-9 \
    './configure.sh'

# Build shared libraries
BAZEL_LINKOPTS="-static-libstdc++ -static-libgcc" BAZEL_LINKLIBS="-lm -l%:libstdc++.a" \
  scl enable rh-python36 devtoolset-9 \
    'bazel build -s --verbose_failures //tensorflow_io/...'

# Once build is complete, shared libraries will be available in
# `bazel-bin/tensorflow_io/core/python/ops/` and it is possible
# to run tests with `pytest`, e.g.:
scl enable rh-python36 devtoolset-9 \
    'python3 -m pip install pytest'

TFIO_DATAPATH=bazel-bin \
  scl enable rh-python36 devtoolset-9 \
    'python3 -m pytest -s -v tests/test_serialization_eager.py'

Python Wheels

It is possible to build python wheels after bazel build is complete with the following command:

$ python3 setup.py bdist_wheel --data bazel-bin

The .whl file will be available in dist directory. Note the bazel binary directory bazel-bin has to be passed with --data args in order for setup.py to locate the necessary share objects, as bazel-bin is outside of the tensorflow_io package directory.

Alternatively, source install could be done with:

$ TFIO_DATAPATH=bazel-bin python3 -m pip install .

with TFIO_DATAPATH=bazel-bin passed for the same reason.

Note installing with -e is different from the above. The

$ TFIO_DATAPATH=bazel-bin python3 -m pip install -e .

will not install shared object automatically even with TFIO_DATAPATH=bazel-bin. Instead, TFIO_DATAPATH=bazel-bin has to be passed everytime the program is run after the install:

$ TFIO_DATAPATH=bazel-bin python3

>>> import tensorflow_io as tfio
>>> ...

Docker

For Python development, a reference Dockerfile here can be used to build the TensorFlow I/O package (tensorflow-io) from source:

# Build and run the Docker image
$ docker build -f tools/docker/devel.Dockerfile -t tfio-dev .
$ docker run -it --rm --net=host -v ${PWD}:/v -w /v tfio-dev

# Inside the docker container, ./configure.sh will install TensorFlow or use existing install
(tfio-dev) root@docker-desktop:/v$ ./configure.sh

# Clean up exisiting bazel build's (if any)
(tfio-dev) root@docker-desktop:/v$ rm -rf bazel-*

# Build TensorFlow I/O C++. For compilation optimization flags, the default (-march=native) optimizes the generated code for your machine's CPU type. [see here](https://www.tensorflow.org/install/source#configuration_options). NOTE: Based on the available resources, please change the number of job workers to -j 4/8/16 to prevent bazel server terminations and resource oriented build errors.

(tfio-dev) root@docker-desktop:/v$ bazel build -j 8 --copt=-msse4.2 --copt=-mavx --compilation_mode=opt --verbose_failures --test_output=errors --crosstool_top=//third_party/toolchains/gcc7_manylinux2010:toolchain //tensorflow_io/...


# Run tests with PyTest, note: some tests require launching additional containers to run (see below)
(tfio-dev) root@docker-desktop:/v$ pytest -s -v tests/
 # Build the TensorFlow I/O package
(tfio-dev) root@docker-desktop:/v$ python setup.py bdist_wheel

A package file dist/tensorflow_io-*.whl will be generated after a build is successful.

NOTE: When working in the Python development container, an environment variable TFIO_DATAPATH is automatically set to point tensorflow-io to the shared C++ libraries built by Bazel to run pytest and build the bdist_wheel. Python setup.py can also accept --data [path] as an argument, for example python setup.py --data bazel-bin bdist_wheel.

NOTE: While the tfio-dev container gives developers an easy to work with environment, the released whl packages are build differently due to manylinux2010 requirements. Please check [Build Status and CI] section for more details on how the released whl packages are generated.

Starting Test Containers

Some tests require launching a test container before running. In order to run all tests, execute the following commands:

$ bash -x -e tests/test_ignite/start_ignite.sh
$ bash -x -e tests/test_kafka/kafka_test.sh start kafka
$ bash -x -e tests/test_kinesis/kinesis_test.sh start kinesis

R

We provide a reference Dockerfile here for you so that you can use the R package directly for testing. You can build it via:

$ docker build -t tfio-r-dev -f R-package/scripts/Dockerfile .

Inside the container, you can start your R session, instantiate a SequenceFileDataset from an example Hadoop SequenceFile string.seq, and then use any transformation functions provided by tfdatasets package on the dataset like the following:

library(tfio)
dataset <- sequence_file_dataset("R-package/tests/testthat/testdata/string.seq") %>%
    dataset_repeat(2)

sess <- tf$Session()
iterator <- make_iterator_one_shot(dataset)
next_batch <- iterator_get_next(iterator)

until_out_of_range({
  batch <- sess$run(next_batch)
  print(batch)
})

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see contribution guidelines for a guide on how to contribute.

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used though the script expect python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python version to ensure a good coverage:

Python Ubuntu 16.04 Ubuntu 18.04 macOS + osx9
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.5 :heavy_check_mark: N/A :heavy_check_mark:
3.6 N/A :heavy_check_mark: :heavy_check_mark:
3.7 N/A :heavy_check_mark: N/A

TensorFlow I/O has integrations with may systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added

Note:

Community

More Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.15.0.dev20200915122459-cp38-cp38-win_amd64.whl (17.0 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.15.0.dev20200915122459-cp38-cp38-manylinux2010_x86_64.whl (22.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.15.0.dev20200915122459-cp38-cp38-macosx_10_13_x86_64.whl (19.1 MB view details)

Uploaded CPython 3.8 macOS 10.13+ x86-64

tensorflow_io_nightly-0.15.0.dev20200915122459-cp37-cp37m-win_amd64.whl (17.0 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.15.0.dev20200915122459-cp37-cp37m-manylinux2010_x86_64.whl (22.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.15.0.dev20200915122459-cp37-cp37m-macosx_10_13_x86_64.whl (19.1 MB view details)

Uploaded CPython 3.7m macOS 10.13+ x86-64

tensorflow_io_nightly-0.15.0.dev20200915122459-cp36-cp36m-win_amd64.whl (17.0 MB view details)

Uploaded CPython 3.6m Windows x86-64

tensorflow_io_nightly-0.15.0.dev20200915122459-cp36-cp36m-manylinux2010_x86_64.whl (22.4 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.15.0.dev20200915122459-cp36-cp36m-macosx_10_13_x86_64.whl (19.1 MB view details)

Uploaded CPython 3.6m macOS 10.13+ x86-64

tensorflow_io_nightly-0.15.0.dev20200915122459-cp35-cp35m-win_amd64.whl (17.0 MB view details)

Uploaded CPython 3.5m Windows x86-64

tensorflow_io_nightly-0.15.0.dev20200915122459-cp35-cp35m-manylinux2010_x86_64.whl (22.4 MB view details)

Uploaded CPython 3.5m manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.15.0.dev20200915122459-cp35-cp35m-macosx_10_13_x86_64.whl (19.1 MB view details)

Uploaded CPython 3.5m macOS 10.13+ x86-64

File details

Details for the file tensorflow_io_nightly-0.15.0.dev20200915122459-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.15.0.dev20200915122459-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 95b6f759281c066a7221f015f1fc1ac971f91df307772d1fadfa251e4ee86571
MD5 746ee600f64f10ad41e821c6e7cc4109
BLAKE2b-256 cf9c6bf9dabda51c36ba1ff39ecff85b8ec3464afdc0b09145bbae721df324fa

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.15.0.dev20200915122459-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.15.0.dev20200915122459-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 18d59aa2066a344cea0d842b4c7644d4fb0d7fab5d3f2550a453b6aed37b657c
MD5 8bd53524b7457f6a5d245ce5ab07abde
BLAKE2b-256 d40e09d5d8348098046948df3aa7e6505914feeb57d6e13e8e4073af71e78613

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.15.0.dev20200915122459-cp38-cp38-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.15.0.dev20200915122459-cp38-cp38-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 24a0880f1cb0856ca6784ed9f1e77cc7584104fcdbd731981c933a99afe9d017
MD5 7ebb4fa02feff318abfc2c48c9c73e82
BLAKE2b-256 bb3af7585dc08dc09f5331f0fcff903b21927c59cc3844a2bb628dd54fa41a6b

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.15.0.dev20200915122459-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.15.0.dev20200915122459-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 9846f18c2af6533af2bc6f1adf1834dc24b9f34f6ed4bfeeedf63b14d6cfda16
MD5 770be70de3024f042522f726d04af7f7
BLAKE2b-256 d2bca0ea562dffb453770916e34410a27c22eec608739a141ff117178ffa730a

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.15.0.dev20200915122459-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.15.0.dev20200915122459-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 bd71908ffa6650d061541a3022318da03d6902090c3bc98cb8f27049592f9e9d
MD5 4c282e427ff9038b1e6fcde70c81eae0
BLAKE2b-256 08b330dc127c4a5c1f5a2fec52851502e3f865db895e3255ea001724092bc596

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.15.0.dev20200915122459-cp37-cp37m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.15.0.dev20200915122459-cp37-cp37m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 70bdaba1bcc4aba1568668903fafddd6c92afe16bad86645c1bfe7b644e5b6e3
MD5 4fb55c0d491db870bbd1965f3db3fc01
BLAKE2b-256 670a5dee15f52eeeac2aba314b72a6866036f6bd367c9ddca5cae445ec155dda

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.15.0.dev20200915122459-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.15.0.dev20200915122459-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 4c6d756bae47320dc691f71162c3a37a0c51fb702888b508788084d858728514
MD5 0a3cf4f77fe158ef581ba484fbbdb784
BLAKE2b-256 6b65059affd8741fa78dbdd2e7763f9a80c1eed498a8c7aabfb41d8ee6f08722

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.15.0.dev20200915122459-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.15.0.dev20200915122459-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 506d9a1c67a2a56e82ee507a148717568a2faf9c29c356ced4d35d6491ef6137
MD5 b0084628ad941451f0b48059db14c331
BLAKE2b-256 535efa24c2e44632636beef78553896f5b3e932bd18d71e88190294af371d753

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.15.0.dev20200915122459-cp36-cp36m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.15.0.dev20200915122459-cp36-cp36m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 affbc278578b2ac3a92e7ea61f1390ffa4c864cd242baae382703c1c873ccef8
MD5 8d97e35a6fae8202758aeebc8090b4e2
BLAKE2b-256 29c7c6ba52041f030f2003b1c5b5439a8fae7831b613be04f4a3a0b0e6c09f30

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.15.0.dev20200915122459-cp35-cp35m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.15.0.dev20200915122459-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 a1c390daa0c4ea28af575feac0c1529bcd0032ddd53288c942d64898b9da6ff4
MD5 23ea0091e36cf5566234fd92bf8f12df
BLAKE2b-256 e0189cb3effaf21d1013d31e48458ac2d67abee36c593ab7b633f6d44755eabf

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.15.0.dev20200915122459-cp35-cp35m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.15.0.dev20200915122459-cp35-cp35m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 1d52c48cac7ab732d67cf2117019d1e98aa7eeff99295ae4ca11f717f194ed4e
MD5 3482449ed1a4639fa7c6129be87250a2
BLAKE2b-256 17a030f85bf62e3c36ca60a289d8a9b9b104cda3b6fa18379a5e6eb5f875c234

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.15.0.dev20200915122459-cp35-cp35m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.15.0.dev20200915122459-cp35-cp35m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 7d9e9f26bb692f29c50d2822f0265e58bbf16dfd321b327fb21e7ae57ee94be7
MD5 769f599bf778147dcab1b8be1a37af37
BLAKE2b-256 6b55436e3b4a2d5398a7a8dd1d662a6eb126f6d55adaebc9f682a0d97fc69035

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page