Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
d_train = tfio.IODataset.from_mnist(
    'http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz',
    'http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz')

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential([
  tf.keras.layers.Flatten(input_shape=(28, 28)),
  tf.keras.layers.Dense(512, activation=tf.nn.relu),
  tf.keras.layers.Dropout(0.2),
  tf.keras.layers.Dense(10, activation=tf.nn.softmax)
])

# Compile the model.
model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for the HTTP file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.17.0.dev20210105233734-cp38-cp38-win_amd64.whl (21.1 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.17.0.dev20210105233734-cp38-cp38-manylinux2010_x86_64.whl (25.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.17.0.dev20210105233734-cp38-cp38-macosx_10_13_x86_64.whl (21.4 MB view details)

Uploaded CPython 3.8 macOS 10.13+ x86-64

tensorflow_io_nightly-0.17.0.dev20210105233734-cp37-cp37m-win_amd64.whl (21.1 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.17.0.dev20210105233734-cp37-cp37m-manylinux2010_x86_64.whl (25.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.17.0.dev20210105233734-cp37-cp37m-macosx_10_13_x86_64.whl (21.4 MB view details)

Uploaded CPython 3.7m macOS 10.13+ x86-64

tensorflow_io_nightly-0.17.0.dev20210105233734-cp36-cp36m-win_amd64.whl (21.1 MB view details)

Uploaded CPython 3.6m Windows x86-64

tensorflow_io_nightly-0.17.0.dev20210105233734-cp36-cp36m-manylinux2010_x86_64.whl (25.5 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.17.0.dev20210105233734-cp36-cp36m-macosx_10_13_x86_64.whl (21.4 MB view details)

Uploaded CPython 3.6m macOS 10.13+ x86-64

File details

Details for the file tensorflow_io_nightly-0.17.0.dev20210105233734-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.17.0.dev20210105233734-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 15da26a46b36df9ea9c560210f0050494de587fb8108c876a82e6d69730da373
MD5 c9ebf5c31aa407012ed1938c03a8f148
BLAKE2b-256 015f6397777b9933ff389fe9dcf8114094d64c81620daad98192ee95a008887b

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.17.0.dev20210105233734-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.17.0.dev20210105233734-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 d3109937896410398fc0f628d8cedbedc6e71462a4fa062d3d9433c5d2494989
MD5 e71821d63a632bb8117fdbd9ae14dc13
BLAKE2b-256 c916cfb079990e507c0709ade4e5f276db2bcb34c33b139b56822153c058a43b

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.17.0.dev20210105233734-cp38-cp38-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.17.0.dev20210105233734-cp38-cp38-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 84b717f11fba2775a0f9ea43d2b274d402f073ec0d7945d033bee2b260bc49af
MD5 f2414dcf4c5668b4d19e13fce56d3bce
BLAKE2b-256 976deb29498f485e2996730a84041dc71ba0dc2ba8a9c8658246bbf2cd018af5

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.17.0.dev20210105233734-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.17.0.dev20210105233734-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 223f1923df758420b7af737eff0ba969fe8518088ba3a4ee0c5005d94c5e95c1
MD5 3432928ac5b18cef4051a61991b6469b
BLAKE2b-256 b7060b852b4baba45b6d4cc8351638cf27da4b22e00eca7f77895eaef9b3c5c9

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.17.0.dev20210105233734-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.17.0.dev20210105233734-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 7b7f9b7e5800eee5f722d881d52bfc8a270566162834a4f1588462eef33c2a45
MD5 b53764fcb2cdb9777999e920e1eca264
BLAKE2b-256 da60b46a05da8c801b0b6d2acc7bf38e4fe59c69d18d1e1a0266419cad8fc986

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.17.0.dev20210105233734-cp37-cp37m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.17.0.dev20210105233734-cp37-cp37m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 c07746ed0aa9f647b259a6e1f4cbf5124ca58f4708ace97e8bc7cdc97189c43a
MD5 d1dc3b2acd8a657aaf33df7df127ff25
BLAKE2b-256 cec9cbfc875b60a3c658f639a420b48cd41157f0d27bc3f095f6ed5ce9325a08

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.17.0.dev20210105233734-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.17.0.dev20210105233734-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 bac38e626ef34a6e456cf8e3375ad573529a40b4d0915bba08e35a33b5cd6fc4
MD5 daab34954b82bc90ba4809a88fe46b1b
BLAKE2b-256 d5004f87fa0704984e62f55abdf682ba64fbf9095a4a007d0451968cdf80f3fe

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.17.0.dev20210105233734-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.17.0.dev20210105233734-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 569eae312898e85163fee70bd06f585f190d59d60e555e417bd003ebf58d9849
MD5 7aa2c5a1652bd0ee2c8679c5158ce34f
BLAKE2b-256 4babe5837be1be17b8a9f0337119a25f7f4fc4f9cb86601ed42171a0c903062a

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.17.0.dev20210105233734-cp36-cp36m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.17.0.dev20210105233734-cp36-cp36m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 7a72aab5d202d63bd95a5d347f4a6253245fc1bf203f388d60c3b6af19e1c9c6
MD5 0dfa0135ed4863290d67b7f1d9858897
BLAKE2b-256 a17420e474b51b1b22519f31dbacbbc02d66b55778c3aaf458d405b7df9b8c63

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page