Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
d_train = tfio.IODataset.from_mnist(
    'http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz',
    'http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz')

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential([
  tf.keras.layers.Flatten(input_shape=(28, 28)),
  tf.keras.layers.Dense(512, activation=tf.nn.relu),
  tf.keras.layers.Dropout(0.2),
  tf.keras.layers.Dense(10, activation=tf.nn.softmax)
])

# Compile the model.
model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for the HTTP file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.17.0.dev20210202193227-cp38-cp38-win_amd64.whl (21.1 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.17.0.dev20210202193227-cp38-cp38-manylinux2010_x86_64.whl (25.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.17.0.dev20210202193227-cp38-cp38-macosx_10_13_x86_64.whl (21.5 MB view details)

Uploaded CPython 3.8 macOS 10.13+ x86-64

tensorflow_io_nightly-0.17.0.dev20210202193227-cp37-cp37m-win_amd64.whl (21.1 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.17.0.dev20210202193227-cp37-cp37m-manylinux2010_x86_64.whl (25.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.17.0.dev20210202193227-cp37-cp37m-macosx_10_13_x86_64.whl (21.5 MB view details)

Uploaded CPython 3.7m macOS 10.13+ x86-64

tensorflow_io_nightly-0.17.0.dev20210202193227-cp36-cp36m-win_amd64.whl (21.1 MB view details)

Uploaded CPython 3.6m Windows x86-64

tensorflow_io_nightly-0.17.0.dev20210202193227-cp36-cp36m-manylinux2010_x86_64.whl (25.5 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.17.0.dev20210202193227-cp36-cp36m-macosx_10_13_x86_64.whl (21.5 MB view details)

Uploaded CPython 3.6m macOS 10.13+ x86-64

File details

Details for the file tensorflow_io_nightly-0.17.0.dev20210202193227-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.17.0.dev20210202193227-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 087a258b9397718f813db0a7735f0256eb9ec169345c72c09aada79c143e4256
MD5 d913bf3fa61e19378d1c12e4e191e785
BLAKE2b-256 fb4e36e481098607a4a836bc4c4795de8d35aaac735ff991b0156e580d9c948e

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.17.0.dev20210202193227-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.17.0.dev20210202193227-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 c466c9ed62a8c8b99c81e5993a418647cdd2d1515a358fa0007f2939ff20d0ad
MD5 7cb8fa5513cfa314504d908c3971fb89
BLAKE2b-256 fffbdc90363d2fc4fcf52da822c0f13720c23c29f973e14cfbc58d53c46d83b9

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.17.0.dev20210202193227-cp38-cp38-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.17.0.dev20210202193227-cp38-cp38-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 453bf92612f4e4902e95a215ccc43c75c257111b30787e048ff18b21438264fd
MD5 0a1166ce7d23437854670b38014a8350
BLAKE2b-256 25b18b77abad603bc28f5e4be212f71ec7306c927d33c14f656d842401963162

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.17.0.dev20210202193227-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.17.0.dev20210202193227-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 47fede8b9bafb045d5f9457c7981dca898a2b0419d4dbb3e86db00356d668bb9
MD5 f1f5de5c45d4a9d279e68a80ea2595d0
BLAKE2b-256 d2b3e6f2cc2088eb11c117d334852cb79a12bbfac5aa05d83ab6a7f677ff7f49

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.17.0.dev20210202193227-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.17.0.dev20210202193227-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 653247f92f0f9003970fb4e48086079163fbf3d8280ce7a83feeba6bfe38347f
MD5 10478ff802b6365714c74cc11dcb30d3
BLAKE2b-256 70ab2fedc8fcfe244d35d7bfc487d50630127a9113ad93ca7739188153fa810e

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.17.0.dev20210202193227-cp37-cp37m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.17.0.dev20210202193227-cp37-cp37m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 ef41c88f78f904d439e7bb07e701be2d5f160721ebd435318c0ec4b26966a12c
MD5 b5652fbdf169d4f46a1f94c3c8a94402
BLAKE2b-256 7179e3f5cc54933e0ecf40cc46da12b95cc2a398e7bd9cbaf693fa4d755232fc

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.17.0.dev20210202193227-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.17.0.dev20210202193227-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 f629f2bc6c9986e8a435d7dbb133228eff2afa52bd741d14841b5ac0a44c9967
MD5 46e947b676c9ba18d042ba3bcf7dbb58
BLAKE2b-256 84be29122f706201cdcb1fdca9277f51b0e93edcac56d68236a8b589182d6cc5

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.17.0.dev20210202193227-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.17.0.dev20210202193227-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 b448f1089f8b44c222cddf7c72338946c00f066c1bea553d4ab1ec99e81237d3
MD5 70b402279d306feb38636b1f36655463
BLAKE2b-256 a3163ccf9d94df49084a84ffe1c2ddbbb0656d09d9b395c0eeae316eb54b79d9

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.17.0.dev20210202193227-cp36-cp36m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.17.0.dev20210202193227-cp36-cp36m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 b915e8a5eb88f83099b0ab15b6703129116ba5eb96db7506638a39146fe1896b
MD5 d1524a1dcaf738fe13b4ddbee602a053
BLAKE2b-256 77eff41948622a3986ff9f0f2f27abfb7e01c4fcb595520f92f5b341711cfd5a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page