Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
d_train = tfio.IODataset.from_mnist(
    'http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz',
    'http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz')

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential([
  tf.keras.layers.Flatten(input_shape=(28, 28)),
  tf.keras.layers.Dense(512, activation=tf.nn.relu),
  tf.keras.layers.Dropout(0.2),
  tf.keras.layers.Dense(10, activation=tf.nn.softmax)
])

# Compile the model.
model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for the HTTP file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.17.0.dev20210208174016-cp38-cp38-win_amd64.whl (21.1 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.17.0.dev20210208174016-cp38-cp38-manylinux2010_x86_64.whl (25.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.17.0.dev20210208174016-cp38-cp38-macosx_10_13_x86_64.whl (21.4 MB view details)

Uploaded CPython 3.8 macOS 10.13+ x86-64

tensorflow_io_nightly-0.17.0.dev20210208174016-cp37-cp37m-win_amd64.whl (21.1 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.17.0.dev20210208174016-cp37-cp37m-manylinux2010_x86_64.whl (25.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.17.0.dev20210208174016-cp37-cp37m-macosx_10_13_x86_64.whl (21.4 MB view details)

Uploaded CPython 3.7m macOS 10.13+ x86-64

tensorflow_io_nightly-0.17.0.dev20210208174016-cp36-cp36m-win_amd64.whl (21.1 MB view details)

Uploaded CPython 3.6m Windows x86-64

tensorflow_io_nightly-0.17.0.dev20210208174016-cp36-cp36m-manylinux2010_x86_64.whl (25.4 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.17.0.dev20210208174016-cp36-cp36m-macosx_10_13_x86_64.whl (21.4 MB view details)

Uploaded CPython 3.6m macOS 10.13+ x86-64

File details

Details for the file tensorflow_io_nightly-0.17.0.dev20210208174016-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.17.0.dev20210208174016-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 3b74cabf6098335ec8193a4668c0557776639bc9cf18669a82013578c662661f
MD5 84b47a9762a7654501bc731e0d7d951d
BLAKE2b-256 64954dc8f4e5a3a0ab54bc2b28186b768ec384133bd673fbbbc5a647c2cd6cda

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.17.0.dev20210208174016-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.17.0.dev20210208174016-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 20cb61b8956cbd90a09104f127f2c124e26b595cd7b2eb4d7da5bbc439be65cb
MD5 6eb88b5684036913f6064cf43da337c3
BLAKE2b-256 9fa1f6423d5195d1d786a95d0c36143e81387814a40ec49f5057cb9a4aa2d786

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.17.0.dev20210208174016-cp38-cp38-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.17.0.dev20210208174016-cp38-cp38-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 eeda0d260ca9f3f9af62f77c6be7ba3e71267758c2c63c6ce48d454778ca47a0
MD5 582a060352f14b367aec29333a3b88ac
BLAKE2b-256 882be62630d530e607545bd4df7d80e9b245fcd064c49cd001ba11e833caf03c

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.17.0.dev20210208174016-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.17.0.dev20210208174016-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 47145e1361b5fb7f63f0dd88ca85d37d6234464540ea5eb3fbd1eec18e6d814c
MD5 e925cf2d8faf72cda878787e8d0ac6e2
BLAKE2b-256 63bfa649a9e80f5e8cb4c5d814eabe1ba7238aa0edabc67edab8fd5489095bad

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.17.0.dev20210208174016-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.17.0.dev20210208174016-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 4fbb378c9f2af8f067d888d7aa4862e01ad7701fa9b956a09d0f306c6138c074
MD5 3afdbc6ff4ac5507a0ccbe55efb3cb59
BLAKE2b-256 9014a6b3a3f430efd356b9724115a0bff3a0ea64c596108fc7b2789bddbc4b28

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.17.0.dev20210208174016-cp37-cp37m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.17.0.dev20210208174016-cp37-cp37m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 94bebc8725ad16b1b75a0ac9a19ad6f7383769e8efc1f41c53fe5bb77551c51f
MD5 a25835a1362ecc26e1fd6b3b4ac295f4
BLAKE2b-256 7af6dada4fe99a0d4ca702c8aa5c62e4367be64e9241082a4235413b6623d52b

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.17.0.dev20210208174016-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.17.0.dev20210208174016-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 af2d6df78e1c15797bd7d2a76d76200380a85b7c1e3787fe67771158ed90be9a
MD5 5ba7309cd6037b93a928b99cb9ae63ea
BLAKE2b-256 6523b5761db912f60d76c584e95ff7c29594ef7109e359ffc4c27d112052f89c

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.17.0.dev20210208174016-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.17.0.dev20210208174016-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 d80058698748ec113905d32565e0e3908bfcacb6e479864a738947e220cf0f7a
MD5 25ab0ea6fc152634533143f0aecbe2b9
BLAKE2b-256 baed1903a74f347c2f0e9ff33d22f440199e5a545146c5e14b60258356771cdb

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.17.0.dev20210208174016-cp36-cp36m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.17.0.dev20210208174016-cp36-cp36m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 7ae4148de8407911ae44d2e70bebacfcec36e104d03ea2ce2f936c4d5a6add6f
MD5 3a0355bcfedf307f506b6888876c686f
BLAKE2b-256 1a4bd5eb29973932d74d6e49487a000dcdc7a7f286a16b3c2f541eb2a5f2be6f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page