Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
d_train = tfio.IODataset.from_mnist(
    'http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz',
    'http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz')

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential([
  tf.keras.layers.Flatten(input_shape=(28, 28)),
  tf.keras.layers.Dense(512, activation=tf.nn.relu),
  tf.keras.layers.Dropout(0.2),
  tf.keras.layers.Dense(10, activation=tf.nn.softmax)
])

# Compile the model.
model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for the HTTP file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.18.0.dev20210227173524-cp39-cp39-win_amd64.whl (21.2 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210227173524-cp39-cp39-manylinux2010_x86_64.whl (25.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.18.0.dev20210227173524-cp38-cp38-win_amd64.whl (21.2 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210227173524-cp38-cp38-manylinux2010_x86_64.whl (25.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.18.0.dev20210227173524-cp38-cp38-macosx_10_14_x86_64.whl (21.5 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210227173524-cp37-cp37m-win_amd64.whl (21.2 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210227173524-cp37-cp37m-manylinux2010_x86_64.whl (25.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.18.0.dev20210227173524-cp37-cp37m-macosx_10_14_x86_64.whl (21.5 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210227173524-cp36-cp36m-win_amd64.whl (21.2 MB view details)

Uploaded CPython 3.6m Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210227173524-cp36-cp36m-manylinux2010_x86_64.whl (25.4 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.18.0.dev20210227173524-cp36-cp36m-macosx_10_14_x86_64.whl (21.5 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210227173524-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210227173524-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 d105929e82a2d12f8f9c244b043474123ac9562e23b5454de19b85c2ed483d20
MD5 0d13c1af97087bdb3c67806ccf20fd7a
BLAKE2b-256 3d87b808b011fa052c1bd78a78eebbd16ba37144a99b348f62334e87f84d0314

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210227173524-cp39-cp39-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210227173524-cp39-cp39-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 c5e5727d320be4cebf0f59a07d775118f4a68cab8acbf20fe61bd98c43dedfc7
MD5 0f5f0fc63a568dc368b5aab6e53caa19
BLAKE2b-256 1c5fc6e2b51cc4e134aade0c537597d6c6fecaf5080a5ac653e2bab6976fb715

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210227173524-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210227173524-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 b11a5868cd3827c76b2bd38390cd6ba9dfd34feb92d0e8d72781b3fd2a04a1eb
MD5 2c4b760ab9c118e2627b91dca7c47074
BLAKE2b-256 4bb719c747e50c1b5fb711fb9e255ef1cc4fbc4cc2c14d802cc671b2545051c0

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210227173524-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210227173524-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 1c3e62778de4b9eac0e053019f1578a033c6494064c0708f064b8c9ef0f49ea9
MD5 a34c4152ceb45eeee159066a881f13e4
BLAKE2b-256 1b6e54b7c0536bd3b223afe4be56b883f4736c044d9fb8bc7d89e2b2339173d7

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210227173524-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210227173524-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 0923795d9b576464ac2e777d9a2e4c89327585ed9a3c3e36d21c4883e228d559
MD5 a5b6c0a8179a45f09bd431a841eabd47
BLAKE2b-256 5cab1066cb66a6576ad36ff2a5779acc860fdec8af623b0ae03f39fb9ff113bc

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210227173524-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210227173524-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 fbc4a65cc5d37953cb8eec143d53b65c237842ea9dd004b04e8a21fe73e094cb
MD5 bc118f565f2b230faa477c669ea12946
BLAKE2b-256 491695b10bf8e67b6a2758515f629bf14098216388a06059b7b65391bc8bfcea

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210227173524-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210227173524-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 6b96389cdf3f266815e8ab9c34bdc460dfb9fd2c23da9bcb5196e9f8e68bf779
MD5 9489fcd943e51f84ae3b0fe5093927e3
BLAKE2b-256 f6246c0ab5492151712fcbd778e58c9b43bcab19dc62a1d5c35f73dfac215073

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210227173524-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210227173524-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 ae1371968b09af93c027ac57cbacba749e2b557ad6ba2229bde9770a72f09026
MD5 8be247ffb0a45da25c65135dab351716
BLAKE2b-256 8c47cfc6d00ad680c17ec1c8e05cc9288e5b8635c32f496282b3b7bae478fb6d

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210227173524-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210227173524-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 a13dd9fb35ef916c917966b89c43c1e1461cb5a15cf6b2a40e955e5185c38622
MD5 eed16fe1a99611e4f6e88de1c9ec7d72
BLAKE2b-256 7b21a1ae29f180decb9b18dd90d5a1588a55b14e55dd2936a23c0fdb1818f61b

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210227173524-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210227173524-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 51d4a47386576a9a13b1034536451873ec25db2573176f03b39e90fa63b2b467
MD5 319af85d10119daa0318753291fe6cc3
BLAKE2b-256 1b2a223322f7330a87c9c4257b82c781257f8d775a9609fdac39a37b6e3fee19

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210227173524-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210227173524-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 0a281c04cd6fb6d1dea0496bd9e2ce9b15a287aa0d9b62509cfeeace4f476e4e
MD5 991591ffd3861bd18de690c8f0a09e5c
BLAKE2b-256 983a5d14cc4b1f7e59b54bac7f827d9fb732b3872a3e39041ad2d37f5f3e3c56

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page