Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "http://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for the HTTP file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.18.0.dev20210314180255-cp39-cp39-win_amd64.whl (21.2 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210314180255-cp39-cp39-manylinux2010_x86_64.whl (25.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.18.0.dev20210314180255-cp39-cp39-macosx_10_14_x86_64.whl (21.5 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210314180255-cp38-cp38-win_amd64.whl (21.2 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210314180255-cp38-cp38-manylinux2010_x86_64.whl (25.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.18.0.dev20210314180255-cp38-cp38-macosx_10_14_x86_64.whl (21.5 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210314180255-cp37-cp37m-win_amd64.whl (21.2 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210314180255-cp37-cp37m-manylinux2010_x86_64.whl (25.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.18.0.dev20210314180255-cp37-cp37m-macosx_10_14_x86_64.whl (21.5 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210314180255-cp36-cp36m-win_amd64.whl (21.2 MB view details)

Uploaded CPython 3.6m Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210314180255-cp36-cp36m-manylinux2010_x86_64.whl (25.4 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.18.0.dev20210314180255-cp36-cp36m-macosx_10_14_x86_64.whl (21.5 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210314180255-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210314180255-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 0f561ba3fe2facc41e64f74b5814f7d6171481b414f39e271a6444c47c2fb234
MD5 6cdaf90c6f8905fcc878ec97706ac40f
BLAKE2b-256 1444d325c6b61719e77700fe036b414f17e19e5d942f5c90d4d7d4520993ffc8

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210314180255-cp39-cp39-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210314180255-cp39-cp39-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 3cc1cc8ad37916d75d0b4503e6ff072e27518b092a703ec6e45d8ef026cb9b85
MD5 8afa803079145bae83c94220c4e8e4b4
BLAKE2b-256 8e58c72381330d31c5df760f9ef5e2705c39e1d9ed60858f9de78962f6d2f65e

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210314180255-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210314180255-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 92a975a4d20d2acfe5947fe4a21dbc50dfba01fccf62539d445655c27e5b16b8
MD5 03435c7d9265adcc07187846657265a2
BLAKE2b-256 85a2ed38d3e6e4aa0f520c44e0f22cf4678ac3dcdf6b1fc4c7760d5d26ee4250

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210314180255-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210314180255-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 392286bd0e917d89c96ebe68eae60efcc63a66ca787db1effb4a4470afb9c6b3
MD5 2e2d31ab53573ddb46e76bab4143e0c8
BLAKE2b-256 d6ca49c8f8e8c5ac7f086728d19253f6005bc3450d75319e2f66dd41ead43b00

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210314180255-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210314180255-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 3f9d0496bb3e6a8d9da4db738fdb937361217e640cc1678a34e7baf8cfc23441
MD5 6abf16e48d84cf2571fcd6153959b837
BLAKE2b-256 3fddce01f8d169171a328f2050c535515efa17626afe3da39c78ecfe1cdd6489

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210314180255-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210314180255-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 1ca14bc75f3fa832f0a3c1dc684f313e5afc16ab199f8427ff28257d1b176f52
MD5 e210afddc6fa6fda28404aa91503b008
BLAKE2b-256 a34ed1539cc330bc393b9fecbe6dd12477c513a7a60429891ea201333cce9374

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210314180255-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210314180255-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 7da12f05f8c3341809d8e2635e8f09a130652375a29c8e693874f93ab289554a
MD5 1c802df06e6c4542f93b3abb9626da2e
BLAKE2b-256 305289ce53d686ab180f3fc80413c10e8c79a1ea7283425efa54a614d942b6b1

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210314180255-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210314180255-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 6aad4ad36b8ecd183c38239018bb227865bbfe6f541136cfd9a586d75064a72f
MD5 8788337c77abe834d315cf36f56d897c
BLAKE2b-256 ed433a0a86b9d9da97361add4718ecfb2b7e556312dd519ae9e5e098ca2d6470

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210314180255-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210314180255-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 1723bfcc8066a1c9c15007a8233669215f058a420c05093b103b1029e4efe73a
MD5 65c1ae74128efa23ff16e42164828e9a
BLAKE2b-256 f91885bc1d5a5bc5c9069e85f4e14c916b147d6931c04c0c27178bde3c968c9e

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210314180255-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210314180255-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 43c0f89d3db07f9ba89586def9eb7518b314aada4379fe0d254d792b7864f792
MD5 4f0d3de707873c2aa46a2f71e72328b6
BLAKE2b-256 d9deef66eecfd4d57fd2fc4ddb966e898e354e080c23b58e5b077d267873b639

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210314180255-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210314180255-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 e1077cdb2ee57aa64d266c28e2901cdbcfe6ef7b734f77b49f3250d71de7df72
MD5 2ccf2bbf7b189198402dde6f0cd53b12
BLAKE2b-256 087dd67d19153979e20ea6255f9b0e0488d2928421bffac77c4313bb1eb74ca0

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210314180255-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210314180255-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 5d778dcbddf3c12f257a0af8b5a2222f16e0d986d280a6beff8557d55bd7b3d1
MD5 0f9b2f2813df8a787cef4c999a43046e
BLAKE2b-256 57f269092496e6ad5b9d7238e5a2e2bb63437d94c9c949ef883caf6cbfa451c3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page