Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "http://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for the HTTP file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.18.0.dev20210323183735-cp39-cp39-win_amd64.whl (21.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210323183735-cp39-cp39-manylinux2010_x86_64.whl (25.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.18.0.dev20210323183735-cp39-cp39-macosx_10_14_x86_64.whl (21.9 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210323183735-cp38-cp38-win_amd64.whl (21.3 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210323183735-cp38-cp38-manylinux2010_x86_64.whl (25.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.18.0.dev20210323183735-cp38-cp38-macosx_10_14_x86_64.whl (21.9 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210323183735-cp37-cp37m-win_amd64.whl (21.3 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210323183735-cp37-cp37m-manylinux2010_x86_64.whl (25.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.18.0.dev20210323183735-cp37-cp37m-macosx_10_14_x86_64.whl (21.9 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210323183735-cp36-cp36m-win_amd64.whl (21.3 MB view details)

Uploaded CPython 3.6m Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210323183735-cp36-cp36m-manylinux2010_x86_64.whl (25.4 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.18.0.dev20210323183735-cp36-cp36m-macosx_10_14_x86_64.whl (21.9 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210323183735-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210323183735-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 98a427ee193cac72a1f56311f6124862798fb1870ed3e7504b88809f8b52ce58
MD5 81730db097c963a6b0c2c1c9c83bc4b9
BLAKE2b-256 09d0ff21b97db2485fd6811e94c1c2aabd986fd504d7320934d9fdc942ed28f5

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210323183735-cp39-cp39-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210323183735-cp39-cp39-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 9a660d7181ad5833caf54ab820ad89f063a36b794c7f0799bf257111a725adf9
MD5 f36b0f5244eb350250522061c6ae067e
BLAKE2b-256 73422ba8bdde947d82308e61406aa7498bd60d0132733e10c508f721abcf8d7b

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210323183735-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210323183735-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 e6fd70026ad721166a84272f0743f826fc55abb182d86a41fa244d85da23ce18
MD5 3bd06fbbe8eb751dfc1239f9e0c0f263
BLAKE2b-256 5aa448ef303a15d12adddb3b83b4f364273ae3f6806a6f94a1934e9ca6a37282

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210323183735-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210323183735-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 dfe8c2276db468a66374d4f71d56c32311733ffcd692a7c8d6aa865e48f8dea6
MD5 42a4d8a2acecfd5135a32832a9035c30
BLAKE2b-256 546f4a0080dd0b1418216d794d3707bd591e592fc7ef0a0b7ad8bc6a99009148

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210323183735-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210323183735-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 a7c4a79369f8c88183318998737b5ccad4aceb45349651e1b461a507f97313a3
MD5 21d33ed66afec8110bb5a2d46053775a
BLAKE2b-256 297d4444ddaba18e195c125dfe7c43942b1aa978eaca0169d85e9d4c528bb311

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210323183735-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210323183735-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 5daf5305e0fcb1e0f5f00ed422bbccb531a0eccbf9893edd14a2baf4b7d33de2
MD5 8ec06ecbe327736e6e82b275bd004960
BLAKE2b-256 96872536ca7c78f9267b0298e16d47eb56e671d8514dd01a57f69d402df2864f

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210323183735-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210323183735-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 231e1a9d206d6d29a2651f1b93c7701ff134d999165aa0ec587c1332a73e471c
MD5 06510d3210599a210fcc4620dbbfbd59
BLAKE2b-256 9725ff07769f710d9bfe51620effc380cd14d1a9af8a8c554c69a7d0149938fa

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210323183735-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210323183735-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 8303da795f4d127057da88c3bd4b45cfa3b5985e95f5becef8b78ad45b05aa74
MD5 1bad92415b31e434fb373bc6f30b6a14
BLAKE2b-256 3b6acdf05bca15456d03527dbb4e062207b0dfb357d7503cabcc2c4df186ff67

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210323183735-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210323183735-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 8dc0beecabdd93c44cef6050d32e532a11ad0eccebbdacad1aa0e6558c61166e
MD5 b6a43ab63d61dd5868d1ef98c9835f33
BLAKE2b-256 ed72c4be969fda7614d68a5675a9b1e60fbbeaadca927fbf85b578fe3563edfa

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210323183735-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210323183735-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 24cf352eea7403434b635045f30a800b80181ed565fa2add80e05b67ec1af189
MD5 8a47a7d60b4de1cbad5ae453f9f2c125
BLAKE2b-256 4d1def77c05a37ae1feac6e2fbd11294ece9f060fd1c1861558d07b67abc7f59

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210323183735-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210323183735-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 9571abe88a4f9a644972f13a07b8eed16bf543226e77b4047e435e360dbeaaf4
MD5 982339e4cbd5629520a592b274a9463f
BLAKE2b-256 f1e42eef05634c491dcd15b272734960592624ba3c2ebe135dc4f471323303b7

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210323183735-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210323183735-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 9e54ed14ccfe75c32ff06ee1faef2a226e9412e48d158835a0b13e13e7b7025d
MD5 eac75081717fc306b83987cc335014aa
BLAKE2b-256 3d92a0f14aa7af9f067c0f3f11d4ac4b31cb45c51eef9955ace374e5910810cc

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page