Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "http://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for the HTTP file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.18.0.dev20210331203010-cp39-cp39-win_amd64.whl (21.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210331203010-cp39-cp39-manylinux2010_x86_64.whl (25.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.18.0.dev20210331203010-cp39-cp39-macosx_10_14_x86_64.whl (21.5 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210331203010-cp38-cp38-win_amd64.whl (21.3 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210331203010-cp38-cp38-manylinux2010_x86_64.whl (25.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.18.0.dev20210331203010-cp38-cp38-macosx_10_14_x86_64.whl (21.5 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210331203010-cp37-cp37m-win_amd64.whl (21.3 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210331203010-cp37-cp37m-manylinux2010_x86_64.whl (25.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.18.0.dev20210331203010-cp37-cp37m-macosx_10_14_x86_64.whl (21.5 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210331203010-cp36-cp36m-win_amd64.whl (21.3 MB view details)

Uploaded CPython 3.6m Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210331203010-cp36-cp36m-manylinux2010_x86_64.whl (25.4 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.18.0.dev20210331203010-cp36-cp36m-macosx_10_14_x86_64.whl (21.5 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210331203010-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210331203010-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 5a8ae62413749a66fe821e8eb8d1bcd839b0b74738f5995fe01c6ca5b25ecad5
MD5 790850dc5a63ded75681282c83fcc050
BLAKE2b-256 36e30b13fb0e658bfa6eb6b293dafc655ea09a5a7b64942a89f461cccceed1ee

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210331203010-cp39-cp39-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210331203010-cp39-cp39-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 4c7e47167193835551d31faa0e5ade2cc356da3c1f366b61bd8b6e4c0fb23304
MD5 8f7a1e95f2375d754f0f99c5c635758f
BLAKE2b-256 fb3a040342b8e234f3b27bf200977c5bf4d5e37768ee5b4ba54443a31ecd3025

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210331203010-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210331203010-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 7d373907b953dc3eb43244c725cfe1c092dba683c36f85a9a517fc06cc590ba2
MD5 f4973885086451622962799c04a71bd8
BLAKE2b-256 f257f5845786e3643d6c172f882c45d9b3f36fc684817d7ffdb30c2d37570bef

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210331203010-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210331203010-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 9444abedc03e5183374b29c79e6e04efa2ee93835511bdae17a7feb6180c51ec
MD5 4bc2c68b52f9a162111d785c9665b561
BLAKE2b-256 78ee9e0504ac5ac3c096bea3dc895a34e987a8264d44eee3ffe52f152510c051

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210331203010-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210331203010-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 e216d35059ed7ec21f2895f430c37a385c2c393e41eb0b22ec6c433f7f0f9088
MD5 5ef3cc03557cce96b19e60a7c673bd09
BLAKE2b-256 7a0318ad918d35076ed4b29fa7b894c24082437223cf71ede2f16e72f6bc2b79

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210331203010-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210331203010-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 2f775cf54fdf7c7a449b29df8bc923ddfce3ef49abd6d1375fe75785aa5bb4f1
MD5 46f9cad584612104436ed5b41d1c22f2
BLAKE2b-256 bdb1ad0e88c4de41030bc49890d2db4aab28ecf809e809056eba611f5e0d1415

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210331203010-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210331203010-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 a2b3dd9edd8379c9df4e9801abdc106de3a648381c9cc24856bf2d858365410e
MD5 ff3709389ccbe14fca32fa0b3462e95a
BLAKE2b-256 07cc69f5d119b67c3aa9391933afd0a5dfb6bf53c1f94601d0453cbf6d628ec6

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210331203010-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210331203010-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 e9462770f9d136f2c2cec6a5c9627a1d9c1156ee9dc7f61118a9373775718811
MD5 f10b0a0091c7d12d96254380696ec8d1
BLAKE2b-256 b2c985af77c878335af1852a04a30b17ffaeb9107e7125e669c7cd136a460710

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210331203010-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210331203010-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 5fd625daa8d1092fde582d1e97901e4b99e3546be2b6aa33c872f2439b5f6c8d
MD5 1f8496023aac0863099369e2303613a8
BLAKE2b-256 16f60368f83c77ad0a113104aa06bd6baae90276949b563a85f7426eebdc5fe8

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210331203010-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210331203010-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 fedb94fc97dff06107e31be3b80d5367e81175b4d1cd9d152dfb594add90eb17
MD5 a6cc5874566bc7704e8b47503b0d1f22
BLAKE2b-256 0288b00a28e9007a5a184eda3f1b9f6ab3803a1153494dc8e071dbee39a125ef

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210331203010-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210331203010-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 5280a8fefea4d908e4ad7c476b2fa25aaea317afe3a0a65f365b87586d7c4716
MD5 876c65b3d14ad3857df9413778a30dc9
BLAKE2b-256 2fce9df0b95776fe6f5c0cea85ead3421ea70cfdad566057aa610ef9bb81f083

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210331203010-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210331203010-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 3b6714063f15146b7ca23a75722e42004885d2abbb34acc1d40cdca371258986
MD5 577c6b75aee0a56e1697d6d1754e4fc4
BLAKE2b-256 9571be15d05262ef63ca17fa66270227a314211babe50b265d735d0fa4d3b471

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page