Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "http://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for the HTTP file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.18.0.dev20210402154254-cp39-cp39-win_amd64.whl (21.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210402154254-cp39-cp39-manylinux2010_x86_64.whl (25.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.18.0.dev20210402154254-cp39-cp39-macosx_10_14_x86_64.whl (21.5 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210402154254-cp38-cp38-win_amd64.whl (21.3 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210402154254-cp38-cp38-manylinux2010_x86_64.whl (25.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.18.0.dev20210402154254-cp38-cp38-macosx_10_14_x86_64.whl (21.5 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210402154254-cp37-cp37m-win_amd64.whl (21.3 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210402154254-cp37-cp37m-manylinux2010_x86_64.whl (25.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.18.0.dev20210402154254-cp37-cp37m-macosx_10_14_x86_64.whl (21.5 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210402154254-cp36-cp36m-win_amd64.whl (21.3 MB view details)

Uploaded CPython 3.6m Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210402154254-cp36-cp36m-manylinux2010_x86_64.whl (25.4 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.18.0.dev20210402154254-cp36-cp36m-macosx_10_14_x86_64.whl (21.5 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210402154254-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210402154254-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 955c47a4e5a1c7da0d26a2b2efeb077352fe2392891870e7533de01ce9fb24f3
MD5 40fb13ed87d15f452608e4add7d16555
BLAKE2b-256 3404f47663732f9004dfe6e38c2725459d0c16969f547ab02f2ac80e405e9c50

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210402154254-cp39-cp39-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210402154254-cp39-cp39-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 1fdd1ce1b6a04a06b66451ebf4e50c681eaecbd6ac3e3973d27e7334d919fcb8
MD5 84bd1937f4cd9be2ad084cd3b3e6e841
BLAKE2b-256 1629168b6d2719666d63f0686cbaef23a7da8b18c9f6cc58eccfc37a9c6afc94

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210402154254-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210402154254-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 9e43c2466c3f9a8365485a26bf6fc0f48917686000036cd427b56a32b47b2691
MD5 32f4b286fd3b5c6180821af65ba6e208
BLAKE2b-256 d7b27b5f41ed9e22e4b80abe5eb56e40cb271d2ba431abcbf3866ee028a7eac4

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210402154254-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210402154254-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 99ead43a31045df8b3a1677caf32f5914d7bb5a5e162cb95df63e45b3a625496
MD5 0cf1c41b2148c5e58fcca57704805b21
BLAKE2b-256 45a337f772a622d84ac974fd26abd1469ee22daa99122439bd74af4a8c36d5cc

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210402154254-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210402154254-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 98ed12782fbf7800aaad26333590e3e68f6b0d1b17a49784e99887e7488b0282
MD5 a098a6566188e6a8735a001076fc971a
BLAKE2b-256 648373c10d04a21d5ee9f92e056bf3c5fa0b2bb59903f42c41a8a645fa0a6377

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210402154254-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210402154254-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 3a9e1c4ecec70868cfa91ebf190622f4a5c61fa0ae28f563d9e4d0cfa441db53
MD5 c6651dc2f75d8f769860d76765f9e1d5
BLAKE2b-256 8cacffe61c96e2f147021e71c61a87ebe8a90b5e3457983ddeb38d66269d7190

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210402154254-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210402154254-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 d8610f0e056949cb31c1355a8b4e35ff538fd46d1a354be36f6e8f02d6b8841f
MD5 c0737c54b2323c78defb5f5eea30e352
BLAKE2b-256 9a98843b2fe578ee325efe4c85a422e155c670447fa5ef6b089c3ac4f904aad8

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210402154254-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210402154254-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 58d7a5d2cbb0b4132201509b08b69e163c7e39748ab94bcb3b6bdac6c90ca2de
MD5 2e86a66db9ed2cd40479b2cf2a95407e
BLAKE2b-256 f95b1b58a9b9a632a4485aa88862b2e8e308d014b0a4452268576d90e860f22b

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210402154254-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210402154254-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 15ba2d854bac7bf295f50b85f075ca8e0befbd5e357223e4d6f9676f7f6b6a7b
MD5 9da4955463c7790d9c1f7a3df38fb6e8
BLAKE2b-256 909d6afe821f850fb2709b880c92f05fb098ec6dbeed24ff52eca4bda939ab42

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210402154254-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210402154254-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 9353fae607e8b0f77efd2887dcf8f7c2a3609eb0bcc3b3fafd34a7ca2e616e82
MD5 3f45106d13834fcb631bf47eadf076db
BLAKE2b-256 67e48f7bc073ce78428da665da2be913b3c68ed1b6203f7d5739ae6c8f8d916f

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210402154254-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210402154254-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 ff6efdabf0d4dbbaf679cd3b6a421fd282052f0829870e72ab539ee655edec76
MD5 20ae0d14dc0e4a351abd686a76b5acdf
BLAKE2b-256 385bea29997fee2472a782a8bb21b4b6c7d70886a6cf91cdb36ce5d62f9d3e69

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210402154254-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210402154254-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 a794da05d39ca870f33093fa3bad545f11b7d51b12e46e5366b2310db3bc7d4c
MD5 9190a958d4b4f2f91f0324eef451bb2e
BLAKE2b-256 5372a145c60e9279e8ec4a1f16a7b2c06fe055d3907781fdee6c4a9220cee1bf

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page