Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.18.0.dev20210411043613-cp39-cp39-win_amd64.whl (21.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210411043613-cp39-cp39-manylinux2010_x86_64.whl (24.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.18.0.dev20210411043613-cp39-cp39-macosx_10_14_x86_64.whl (21.3 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210411043613-cp38-cp38-win_amd64.whl (21.3 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210411043613-cp38-cp38-manylinux2010_x86_64.whl (24.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.18.0.dev20210411043613-cp38-cp38-macosx_10_14_x86_64.whl (21.3 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210411043613-cp37-cp37m-win_amd64.whl (21.3 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210411043613-cp37-cp37m-manylinux2010_x86_64.whl (24.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.18.0.dev20210411043613-cp37-cp37m-macosx_10_14_x86_64.whl (21.3 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210411043613-cp36-cp36m-win_amd64.whl (21.3 MB view details)

Uploaded CPython 3.6m Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210411043613-cp36-cp36m-manylinux2010_x86_64.whl (24.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.18.0.dev20210411043613-cp36-cp36m-macosx_10_14_x86_64.whl (21.3 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210411043613-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210411043613-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 75f32d7f22d12e8cd7ae42e5d7e5d2c405c46fd16c4fadd1bcdddd7099923e88
MD5 1a22885e8f475992bd470d73db208d61
BLAKE2b-256 c215f40fb6baadd80ab88b60673909f5581282c5ee05969b374b39207a3b9e15

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210411043613-cp39-cp39-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210411043613-cp39-cp39-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 563d1e032de01c36b8b33bba044ad016c20f1b6a7a73e4ad5d3643e9e24fe70b
MD5 05388071556e226a3cf02978bb4e6253
BLAKE2b-256 00b5f6c7fd0b7eb0dcdaf15b3a72e39e59f48f32a4e2a39d82a9aefa91530b16

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210411043613-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210411043613-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 adf1d2ef61cd10615ef8b546b7be633eb83a1dea32a38e1836bcc51798c0bc09
MD5 fde1b126255cc8c739c963ebaae61685
BLAKE2b-256 f4bcd6d4e83053e536c0611b778e8c722fd2b236c5a79d2ed9b320b196543716

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210411043613-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210411043613-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 82c90fb6857f06132f4661daab4c49a64a1a69b9ca1dcde96c74c9201b5bf003
MD5 82e10503ff3be053ae8dff0abf195e43
BLAKE2b-256 607903621c4e1d93af416f4d83b4d868eda325fad98415df721b970a5908c442

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210411043613-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210411043613-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 a7e28517974e4e0bbd33676b357d2addc50cd9c8ef5fde4de3379cd8feeaf603
MD5 8d97ec28221ebbbc1823f5b37646637e
BLAKE2b-256 04ca43d65e17792b53122b690eeb150bb26b24556f15aaffc9213b233b4877fb

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210411043613-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210411043613-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 0b19f711ad121e2dbba80f91a69a426a9f2f08dfd3110a178ca6cf915d172505
MD5 dee452ff25b268aed8b929803aa9fdeb
BLAKE2b-256 b526d87891ba35e05717e54ba8dfef0df164d76f54883294a18f2b50e8354382

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210411043613-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210411043613-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 da0901d9b1c34fffbca1b23d46b95668345b7b79a4f65181df10561bb3c3ef78
MD5 59dd21766ca939af77bc2d18de52d2d3
BLAKE2b-256 d9f9ef6b2a61ab455c1e360f8d7b0431cf9f1233fb8c2810b5ce8dbbe3d5c1d3

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210411043613-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210411043613-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 38e41b5d22f312a7a27cf5ea0fb81a642d2b2a011d0e1b29aed0cc9198914135
MD5 347903a644502919b3b47f12c1a408c6
BLAKE2b-256 cb1e71419000d2475629678d10e1ddc307b988332735b08590dc29f415bff33e

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210411043613-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210411043613-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 b34446d2103ceb0985fadfed2efbaccd92584ced69e9440a33e81c188fc37c75
MD5 93488e80ae485bbca584637a8759be73
BLAKE2b-256 4e75fbc5b74c9c6bfe21d1b937d0188cd43c46bff388f169ba21bfe1a132d404

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210411043613-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210411043613-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 5fb5760b5a867f4719d7db8560087a0904a35fdf329a6b874b42c19a24dbd697
MD5 ac0663b5664e12cb1017efc1c34f8f9b
BLAKE2b-256 b6c1e198dd5df4b913c6129699cf96f62bbee1a98c6d7b438ef92656dc6e4e4c

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210411043613-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210411043613-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 9beb653f64945d487be309cf47216243b6741445bcc58173d0be6351c03edc60
MD5 30456842fbe078cf1ab9c165b95273ba
BLAKE2b-256 cb74c01668e72f8e1d04d3b224990d6de3328058556c07ebfdb53e521c934959

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210411043613-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210411043613-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 6487912567685b6d83bb878eeb1e66f306ff1ea564b1d7eeaf0797efd732d5f9
MD5 24a991a21d6e3acd4f0cb9b507a55f98
BLAKE2b-256 a6e925be33784b17f0f04d6b37ed6ed22a69e82eb83bdc9a356ed90d76ab548a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page