Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.18.0.dev20210411123115-cp39-cp39-win_amd64.whl (21.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210411123115-cp39-cp39-manylinux2010_x86_64.whl (24.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.18.0.dev20210411123115-cp39-cp39-macosx_10_14_x86_64.whl (21.3 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210411123115-cp38-cp38-win_amd64.whl (21.3 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210411123115-cp38-cp38-manylinux2010_x86_64.whl (24.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.18.0.dev20210411123115-cp38-cp38-macosx_10_14_x86_64.whl (21.3 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210411123115-cp37-cp37m-win_amd64.whl (21.3 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210411123115-cp37-cp37m-manylinux2010_x86_64.whl (24.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.18.0.dev20210411123115-cp37-cp37m-macosx_10_14_x86_64.whl (21.3 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210411123115-cp36-cp36m-win_amd64.whl (21.3 MB view details)

Uploaded CPython 3.6m Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210411123115-cp36-cp36m-manylinux2010_x86_64.whl (24.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.18.0.dev20210411123115-cp36-cp36m-macosx_10_14_x86_64.whl (21.3 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210411123115-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210411123115-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 c5921393da14885575a3d6e629e0485cf2b2b0147aab919725a8e281ec2a1f4e
MD5 c4ed37f16f80f72bbcde776420752551
BLAKE2b-256 cbb63a751b26f4c4be24992d6bfffc6991c82a320db209cfa300b577fafae3c4

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210411123115-cp39-cp39-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210411123115-cp39-cp39-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 12f8a03f4727c02f26eb1b9503f61466152111eae49d10ed0e9f378ae76cce9a
MD5 e52041c08270f8aad1576fe07f7df478
BLAKE2b-256 73facfa7e9363195a2ba280473f781d617c10bf3a849a90f8cde637bbc58ca11

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210411123115-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210411123115-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 4f17730648848a92b05519e71e3e8b4917c895e8baa98ec55b71fe84347836c4
MD5 87daa088f42817eb91bed58272ec9abc
BLAKE2b-256 245148d254bedabbd97a8378e0ca2df8e8fd9af679ab437df4ef51ba426a7688

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210411123115-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210411123115-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 c1816fec59083461a6daebd486dca77180cf0893d1b65887cfc1b26b4359333b
MD5 c4b07c775972504be39ef811e657bf9c
BLAKE2b-256 2cdbc102f5eed1ffce0fde42076749fbc4c1065ea9e6aaee59b816d358d1a386

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210411123115-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210411123115-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 8ee28307ce8905b249fef628570dbab5351746cb7ce5d66d9b4f0cac7a25d6e5
MD5 e1ae444a1885952ffd18cdba34b98590
BLAKE2b-256 bcd03d9e63db711c59904a85514656243a5114986349a4a862afe19e9f8f1b3c

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210411123115-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210411123115-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 f8b22bd4bc8a0a546894a6ad9824a7fb20d96763ce730fef4ff1481c63296319
MD5 1caf32227a409a0b11a37080892a391e
BLAKE2b-256 46841a489b30bfca6b7f271d3b50c3a741cc97d6aa355b04935900bc886501f0

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210411123115-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210411123115-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 1413871e1757d68d5f56389d84528ac453ebcc384906f1caf13eea56910e2c18
MD5 d75a5e27323912a6b75d80e4f1147d5f
BLAKE2b-256 8ee5e7eb001a046e762bb1f6b1cf009c9677f5df1eb043833f1fb21d7f45e658

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210411123115-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210411123115-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 c6a8820c61182f403d0d548f01da2d226bc7c1568e82c24d674307bfcb9332df
MD5 9c0c15055e30f70e3127c13e56f5abce
BLAKE2b-256 f1ea42d3cc36502ec08522730bc5cf8c9052434110c25ddf9a29bb1fcc601b64

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210411123115-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210411123115-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 533e11ef21f8ec562d11270c2b6fe5663879221af1909ca5ffac620cc47ad560
MD5 9d0fac869dce0422ad5486b998e1f51c
BLAKE2b-256 000d41d31d2d763ae6c511ef16428d880b4e936a6c96e4f3a8198c424f528676

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210411123115-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210411123115-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 ec2b319ba61b005f6ca96978b2ef8803df550783acd2f64f066c8e758d9be937
MD5 0275d48daa0e2248c5509c4337035e6f
BLAKE2b-256 a51e8dbaf07493d58870565ab322d6dcfad01e01b1ded68986f5d19e863439d7

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210411123115-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210411123115-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 11f9f63acfcc42eb97eb7beccd7451b18b55494a0fc430ebcafbd27076af7154
MD5 6b339c3dd171bbf3dd82883a344922c7
BLAKE2b-256 cfab0cd0c250f7e1981096ec322b4e0883d889b3e56ec78934cd2d528d868362

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210411123115-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210411123115-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 7bf935c264b79377ec8732bac396e136cc57db4e938ac31b48b36e65a76bf253
MD5 e28afafdcffe4d4f2e138ccc165165d3
BLAKE2b-256 ff79f865a88ca06918076cfbfcf5fc64c6587cf4bd02fc2510dd39200df10888

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page