Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.18.0.dev20210419142641-cp39-cp39-win_amd64.whl (21.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210419142641-cp39-cp39-manylinux2010_x86_64.whl (24.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.18.0.dev20210419142641-cp39-cp39-macosx_10_14_x86_64.whl (21.3 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210419142641-cp38-cp38-win_amd64.whl (21.3 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210419142641-cp38-cp38-manylinux2010_x86_64.whl (24.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.18.0.dev20210419142641-cp38-cp38-macosx_10_14_x86_64.whl (21.3 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210419142641-cp37-cp37m-win_amd64.whl (21.3 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210419142641-cp37-cp37m-manylinux2010_x86_64.whl (24.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.18.0.dev20210419142641-cp37-cp37m-macosx_10_14_x86_64.whl (21.3 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210419142641-cp36-cp36m-win_amd64.whl (21.3 MB view details)

Uploaded CPython 3.6m Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210419142641-cp36-cp36m-manylinux2010_x86_64.whl (24.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.18.0.dev20210419142641-cp36-cp36m-macosx_10_14_x86_64.whl (21.3 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210419142641-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210419142641-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 4f98ad3f2b008111b1874c61c132d135be18bf3e6c938349a9fa3c648cde684e
MD5 77e18985c83547228d53bb163fae4c55
BLAKE2b-256 503e64b237120a20b1505dcbe4d15b7b4a6c863e19b2064a50434b4e3178eb77

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210419142641-cp39-cp39-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210419142641-cp39-cp39-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 b6bbb7710fe6b99bceef33fd00df79b7b0f4d9ad933d2b46a9f5499fcf430cbb
MD5 3c387595231d52bee4ab346d79e862c3
BLAKE2b-256 fe574f0d43d71397669729214d0f1571d746fbe6e4844ef2c84008856336a56b

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210419142641-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210419142641-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 73850c68e9af4d36132ee9687bdceb1a290ef57b4ba766d18f573b23ecc0290d
MD5 67b91291802d23f677b2b2c8d7764d89
BLAKE2b-256 b4176fb4f45204d582b777754c76af7fbfe3350e616b36203f04c694ed46a63a

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210419142641-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210419142641-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 761bb2a8c7cf36fbb60434912d78fba247802a1771e284774c50847e72061aaf
MD5 1a295d109cc1023d42c005bd439c3216
BLAKE2b-256 c52657449733fb6f161e664aa41999d70ab77ace383d7b3b7400bf1ea321803d

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210419142641-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210419142641-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 ebe0be35bb4fee9f91b22ac095c5420f8b8aaa018826132cd08ffc20bdca0936
MD5 2d9beeefce59ffaad80995e82fae5364
BLAKE2b-256 fef9f0741031727c85f33440d47afce2b3958e8e983289610a6c81876d973b40

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210419142641-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210419142641-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 ba07d0769f39a8c771a89adf9fc774c66996e9b6c00df21b99eb08867ce0f9f5
MD5 250dcb71893a1b3dba199b8fad8c3bde
BLAKE2b-256 7f43e79bc6666b0a957bb3cd742bedb169e91bbbf8dad63b4241e89e35285044

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210419142641-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210419142641-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 119ac5b4398f5aed608907fd8c90fc669d7cfbb5215af24e590f0bc54d42184b
MD5 686fcde753d6f1aea8fe765a4121eb48
BLAKE2b-256 73553389d7822c76a488554b1fd233a931432ebe6cb48bf5c7decdb3a823d54a

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210419142641-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210419142641-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 98cbad5c5adde6ec5c62db12c2bdb75750a2e70663bdbc38a088a5fb7ca9754d
MD5 a2b2899c0c22e7323080f065a1e5d7e9
BLAKE2b-256 631e285c090482dd3c8dfe4c422b2f2b117c6c61567c08d51efb9743d18a71dc

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210419142641-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210419142641-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 5477ed0f0798d2a0ee148d18b00c760449ecde0567a6a5d5c9d894a8a3913e71
MD5 6f47a72b55a17a97c55b830384e980d2
BLAKE2b-256 a4fd296efc80f613c6b1b0585a1e6a287e772113563e17183beb808f7d6b6425

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210419142641-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210419142641-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 0e8107a24226acaf2b5e8e457dc39337e2acf1d86c804b53118e3231902196d6
MD5 3e8673f5be508e1d51b5afc2c0b17ef5
BLAKE2b-256 98a65caad675c240f0d8dc3fbafa7dd13f42d4d86493b6ffd7d5c66eeacdb4e8

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210419142641-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210419142641-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 6094d1096db455e779cb056d6ba7f3b2522c7ed2ea98b9a790a6f42ed157d704
MD5 2c905aa6f73e49ed58f5690fe5f79647
BLAKE2b-256 9be6683274a04e47325688ad700a76466b1a57732b87e90c42a15adf99ca3c39

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210419142641-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210419142641-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 35e5d51f469afac6cb3b2847ddda57009f29eb6be68bc1b038a74bcbed291677
MD5 1c8f248f0ad12f4d30118f250138177a
BLAKE2b-256 0ce0e4f703e0cac5b86c43a18953026eed8bf0d06dd8fefc0431c315a14c2b73

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page