Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.18.0.dev20210426074701-cp39-cp39-win_amd64.whl (20.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210426074701-cp39-cp39-manylinux2010_x86_64.whl (23.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.18.0.dev20210426074701-cp39-cp39-macosx_10_14_x86_64.whl (20.7 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210426074701-cp38-cp38-win_amd64.whl (20.3 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210426074701-cp38-cp38-manylinux2010_x86_64.whl (23.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.18.0.dev20210426074701-cp38-cp38-macosx_10_14_x86_64.whl (20.7 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210426074701-cp37-cp37m-win_amd64.whl (20.3 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210426074701-cp37-cp37m-manylinux2010_x86_64.whl (23.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.18.0.dev20210426074701-cp37-cp37m-macosx_10_14_x86_64.whl (20.7 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210426074701-cp36-cp36m-win_amd64.whl (20.3 MB view details)

Uploaded CPython 3.6m Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210426074701-cp36-cp36m-manylinux2010_x86_64.whl (23.7 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.18.0.dev20210426074701-cp36-cp36m-macosx_10_14_x86_64.whl (20.7 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210426074701-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210426074701-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 c03ea7982b30fffb829d831986f714b4bbcdb306367db963402a0ed2f123467a
MD5 46e6bb7b5678a1481f7baf5c596ae1d4
BLAKE2b-256 615f735ebdfa9b81e9ef10101d3b8eab318324918bc94c9d9a4c7c6f519c8446

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210426074701-cp39-cp39-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210426074701-cp39-cp39-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 f3059073a063f3273aaa26f4b98507cdd8993503243aae63df9bdeb8c2158456
MD5 046354a8a66b9d26ccc24e9057ffc48d
BLAKE2b-256 c25a96f823b023711f01dd3dbe0c81c42c618c6cd97dcf1ec372785214fc768a

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210426074701-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210426074701-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 c76501aef026d2b6f41f8a737d360479185a32118718d8b2cf29353e59aa7d94
MD5 d75026fcdcde13987f394208d33bce54
BLAKE2b-256 0bd9ee7bb7b736395e4270fbe1b2e09aa39df2c55269894eb444b6f3a23d95fc

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210426074701-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210426074701-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 decd7066e400de3b3eb25671b107953cffb334dea410910bbd3b7ae64d05eccc
MD5 e4f1e8ded4dc3b5ae03f8a1b334a3403
BLAKE2b-256 1fff6f3d06fad055cdb5cd8f0d5b62c5d3aa934822fc3873f8d64d29f1998cd3

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210426074701-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210426074701-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 f4a53ef649cf6ce12aab91c30835b81318a50fb9683b4ff467d38f58735df2bb
MD5 5a918d16bf196af54abd6456f02fbe82
BLAKE2b-256 57532172c48743879e1fb0cc3fb9006e1e4d34e76a9c7d32355f671557311d46

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210426074701-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210426074701-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 6f6bd8d128ca90fc7751bb2da9d653b4b3dd3cab6a61c89c0a832143d94110ec
MD5 5e4658560a78b3acef18c25b6d7d572e
BLAKE2b-256 ae1b79e69cfaf26cbc82ccb627838804b8c59480f943536e23e136bbd7e69767

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210426074701-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210426074701-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 a0447b4280532526efb334e947a976c3528c083ba3628c9a08a80564707c0337
MD5 528950501e8cd353b0b107a0c36fa43b
BLAKE2b-256 bd8a71cca3397dd617585df5061dcc1eaa44d61ab6da40749e83b3abe44bc3f8

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210426074701-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210426074701-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 2fbf90ed2ddec00a0d3c8749b91d4b0b83ff91775d0d27f79fee998f683d2f65
MD5 491b4326bb3d33aced42b666e30209c5
BLAKE2b-256 af308a62743de03c9496ef493b46f5d93dc49568f481d663e2d056fdf4e7a2cd

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210426074701-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210426074701-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 24751acdd6cbc61f8e17e2208d5980cf30de1abf604319f745336c22a2390039
MD5 6414a704691df1db8c56471b832a8a63
BLAKE2b-256 e0b8cb43bc1d5435735a5445b1ab5658c747a43f357ec59ebd1cb6c43dbd7542

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210426074701-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210426074701-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 3cfa5ee5e3738044c7d1018e90844298bd6049a5ebabed8eca79cd6445bb5084
MD5 efd3a3c1594122c32901c5c745ea1ba6
BLAKE2b-256 f956c39b3c245fda8423d1130a1e87f57339295ea88d68a651d6da4c298eab07

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210426074701-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210426074701-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 07e0e26b82617d5b4ecc5aa7aaf425b3e6f501f747f9f398d639208ba9ad863d
MD5 9419d2a6fb7d137c24d96565c4417cfb
BLAKE2b-256 87142aba84e4af883f841e842fdae0576151dc4a42e90aed8ee50f0a16e1ed60

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210426074701-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210426074701-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 270078e28918409bfe42f9d6444bf21c15f6e4132a6ecf5058bf6800d7fc5e11
MD5 a2d13d7ddc96e798c02d7e44bd065e11
BLAKE2b-256 a57c4ecdb9e9a5a7456c160703938d5d58edcd97292540a8ec4663a7c0f25887

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page