Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.18.0.dev20210428152043-cp39-cp39-win_amd64.whl (20.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210428152043-cp39-cp39-manylinux2010_x86_64.whl (23.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.18.0.dev20210428152043-cp39-cp39-macosx_10_14_x86_64.whl (20.7 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210428152043-cp38-cp38-win_amd64.whl (20.3 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210428152043-cp38-cp38-manylinux2010_x86_64.whl (23.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.18.0.dev20210428152043-cp38-cp38-macosx_10_14_x86_64.whl (20.7 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210428152043-cp37-cp37m-win_amd64.whl (20.3 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210428152043-cp37-cp37m-manylinux2010_x86_64.whl (23.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.18.0.dev20210428152043-cp37-cp37m-macosx_10_14_x86_64.whl (20.7 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210428152043-cp36-cp36m-win_amd64.whl (20.3 MB view details)

Uploaded CPython 3.6m Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210428152043-cp36-cp36m-manylinux2010_x86_64.whl (23.7 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.18.0.dev20210428152043-cp36-cp36m-macosx_10_14_x86_64.whl (20.7 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210428152043-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210428152043-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 c69286e94be34db1bdde81acaa35e52e12c4d045d20e55bb2228fd9c86e20f4c
MD5 d898fb11165af9bdf64d8f400f595e9f
BLAKE2b-256 23733945504fe59216d1fd769e132ed628a4e245f7ee13ff673e1c5c633d5d48

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210428152043-cp39-cp39-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210428152043-cp39-cp39-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 d0de1d864d77bab9cb0cfd6735a3abbe9ab50aeab5cb0d0b9b35ac0a4790cf8b
MD5 d142a06ea8150364f6c6ec9c4cdaaf2e
BLAKE2b-256 37ae341c65a4d66feb5ed9819a594742a22725831b4da9e25099032658fc6af5

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210428152043-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210428152043-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 9505538078d358b85de64d0aed070a1b0b3f09b1df0cbb74dd14cf6c780cfe8c
MD5 3c685bf4f651e528818455a57dfab2a1
BLAKE2b-256 d6dcbfd1884d42445833be2a25874d14bbefebc6999c7e2ca14ea41b292ee652

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210428152043-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210428152043-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 abf3986944391dfb4605ec5bb7da35a31afc8b1201d32301f10897ec9a83fd0c
MD5 d7aa91cce7f9c6a011d573133d523a88
BLAKE2b-256 eb421cb7575e3bf53eaaec6d5b46e340be2e1aa9a29292c85c660cf837ef4b23

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210428152043-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210428152043-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 8b969d9754632cdf65076a9197ea773e2bf02456ef9fe236b08c1e3be9bbdab1
MD5 7f7ad8aee2ff8a20a2919da4c98eb921
BLAKE2b-256 47e79f517c75ae6cafc8c9d9f8a5ab961f98b57f2940ca207bf05ee8f0ccf218

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210428152043-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210428152043-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 64a0f1cee82b4cba10d978fdbc1fcbd3e5b001b9dcb3d2cd3cf484c008096b5e
MD5 ffee0074dd969694a77676e8a83a5c87
BLAKE2b-256 b8614c02feb3106852a6413ab3af6ad7e35fdd5a516d3416f870b36d6c6a646d

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210428152043-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210428152043-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 1d39074a38d3e777ad27b38e959421772a4442b33a3b6c2e90b076f60284f143
MD5 55d762b4cb348664b2c152b55ec0a69e
BLAKE2b-256 406a86c05f1a47101903740bbe5c0fd2bad0a3d274bf9eed5cf31e5f5381a367

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210428152043-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210428152043-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 34f346299beee051e941a1cb0740cdf82d851a85b1f24205cee1e1fbadfb79df
MD5 525c50386bc1b69e682554767f8d687c
BLAKE2b-256 967489ea4ecfba8806af7d4092fb5041d478b55da5122c42409ded1cca23a31b

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210428152043-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210428152043-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 9baedb24d0d077ebe71be62519755648f19e12bcb083f9b96b9ec3597b7fe776
MD5 f7813283ed74a03d32a4e89d83cc73c6
BLAKE2b-256 c2f36563d5c478312b98ce3b9aef55c32f4b0b5a8f751cc71bdcb9fd517c6f7f

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210428152043-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210428152043-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 803e3bef5ceae98c15ac2908dc04bc6370de868cccb50fbf043f194f858e2d6f
MD5 50d7b7329ba67df6b4759f059176f8eb
BLAKE2b-256 5c8c051bef01cec685218fd969a40ad05640eb46af72b96c9a456c2a5f3ca78d

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210428152043-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210428152043-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 0a0a3ce84a0058e740bb10385f644b999043b982dd9c290ac2250f58e673e653
MD5 a146ef1bac5e9bb94b0fea4195938c01
BLAKE2b-256 50b9aa3fdeee65d9f22567469866f3833943383d58cc8d35eecf79220f8bc936

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210428152043-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210428152043-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 f0f2ff29f6fd97946708bc4eef3503aa77caa09c7a385fd06de0669c5856c7ff
MD5 72bd640613dfc5d3553d8350e3badcba
BLAKE2b-256 2e6e5435928e89291876e8192d5a79a378893dd05ad52803213c93b1a1b2d050

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page