Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.18.0.dev20210428162847-cp39-cp39-win_amd64.whl (20.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210428162847-cp39-cp39-manylinux2010_x86_64.whl (23.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.18.0.dev20210428162847-cp39-cp39-macosx_10_14_x86_64.whl (20.7 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210428162847-cp38-cp38-win_amd64.whl (20.3 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210428162847-cp38-cp38-manylinux2010_x86_64.whl (23.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.18.0.dev20210428162847-cp38-cp38-macosx_10_14_x86_64.whl (20.7 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210428162847-cp37-cp37m-win_amd64.whl (20.3 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210428162847-cp37-cp37m-manylinux2010_x86_64.whl (23.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.18.0.dev20210428162847-cp37-cp37m-macosx_10_14_x86_64.whl (20.7 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210428162847-cp36-cp36m-win_amd64.whl (20.3 MB view details)

Uploaded CPython 3.6m Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210428162847-cp36-cp36m-manylinux2010_x86_64.whl (23.7 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.18.0.dev20210428162847-cp36-cp36m-macosx_10_14_x86_64.whl (20.7 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210428162847-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210428162847-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 e25fd74898728f0a014b8ef5172b6dc0ed8a9c4159ed5f36096bbd5befb4a115
MD5 d4ead0dce0953243ce04036c2a324f08
BLAKE2b-256 6f01fddb0a29cd5f7b5219e553b1c0585fb209012e8f3da8ece3aff778515aa5

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210428162847-cp39-cp39-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210428162847-cp39-cp39-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 829dba025963257a7fef2735c14cfc4ab73062e36943f6f2255268ec0ef96749
MD5 94bd7c903823ebbd00a7070c6d747601
BLAKE2b-256 c1cedf726b346fad700abb5993d1fec53b48eefe4b135081cdf91cdaf8a3517f

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210428162847-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210428162847-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 8e6934039ca3e2c3fb06dbbe71c1f833e9f8c5cae288d90be933ceac933e1be7
MD5 3293154b41b4172c8fc953db3522f665
BLAKE2b-256 295214eb54d5c33618c6a9814dcb2c311dbfb923e875a2d0ce635d375948ecb2

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210428162847-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210428162847-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 8af7a1e43bbe090a9e1cc160424096500159aac72ad8f319a8e55a488ef7a6e3
MD5 6ee74e703855a75e531c67f808950b7f
BLAKE2b-256 4d13d01ebcfb21f2fff51de81710d3e4abac4744266064e408945febe8656297

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210428162847-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210428162847-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 300f3aafb42d7a8c6da74871ecd1ede0625088adf8f9b4721af0012739d66234
MD5 0280b38fdfc2305f49168e7dbc1b47eb
BLAKE2b-256 d5dc983871574a5babff8cc33eedc8442995f6b7e108a9a7862cd3064c0a2274

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210428162847-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210428162847-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 98d0f32508c739dacd57896a08392895cf3b2b1cf925920c63d6a740cb616301
MD5 d436f14e73940e5bb80f55bf29881e72
BLAKE2b-256 a18e861f281259e2c82f0cbc682be441f5fcf0796eb3e96eb809f63d828dee2c

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210428162847-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210428162847-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 89038dad42e38a84ff51c12b04ae5cfe5dbff74016e8cbc634ca123527a8ca7a
MD5 b138fba61bc7e05c0d5f5f7d0686284a
BLAKE2b-256 701ff49a39a160a3cb21ddf1cd22895389418315f573b03ab752adf93c0e6fbe

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210428162847-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210428162847-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 c8006892b10709021e70bcb1fdb4ab680e555b8718ad1cde0fc4fcb1601995f1
MD5 d67d2d2e7ec74f67102e574fd4476c0c
BLAKE2b-256 47376947544351049e42c3dda0ac53ac52af0aad41eec1df215bba8f79a29480

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210428162847-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210428162847-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 4ab532763851fa3fcf846618df804ea6c7e0ee579c9706591b6b21321ecdeca3
MD5 257fa35d1a38cfe4fd396ca695f97d7e
BLAKE2b-256 bdd1247abdaa7f7ef17400b0d01fae0cb7f4baab482be485d0c89d3cf8607115

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210428162847-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210428162847-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 3773e4c14682877932763df56012da9df25ff3f9b1e3e73d938a785f183132c5
MD5 8b40060afcb11667921519f3d0156365
BLAKE2b-256 72671eaff567990a2b6541ea0c67cb108e75672f777f331abd8317dbc9340e86

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210428162847-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210428162847-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 96bfb45f2d3ba3593d3e98adb5377b774bf0745d32cc0524fde0f2b9ee9750b6
MD5 a2eaa483b53a0392d00e68f7ac0dc2be
BLAKE2b-256 3b2c84111f34eafd3d0083eb4eb2fa0ece099fe8759b0147a6f3d1cfeffbc2fd

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210428162847-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210428162847-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 37b084b5fbe5cae2f2b528742d6043b209e96beb6cb7940cd7fbe943d7da7d59
MD5 6de4a6b685afaa5e0f0591000bef1630
BLAKE2b-256 fac9109a483852be64f1206835050e32dc99899e5ae8489ff4d70e53b7e5288e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page