Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.18.0.dev20210429213542-cp39-cp39-win_amd64.whl (20.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210429213542-cp39-cp39-manylinux2010_x86_64.whl (23.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.18.0.dev20210429213542-cp39-cp39-macosx_10_14_x86_64.whl (20.7 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210429213542-cp38-cp38-win_amd64.whl (20.3 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210429213542-cp38-cp38-manylinux2010_x86_64.whl (23.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.18.0.dev20210429213542-cp38-cp38-macosx_10_14_x86_64.whl (20.7 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210429213542-cp37-cp37m-win_amd64.whl (20.3 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210429213542-cp37-cp37m-manylinux2010_x86_64.whl (23.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.18.0.dev20210429213542-cp37-cp37m-macosx_10_14_x86_64.whl (20.7 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210429213542-cp36-cp36m-win_amd64.whl (20.3 MB view details)

Uploaded CPython 3.6m Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210429213542-cp36-cp36m-manylinux2010_x86_64.whl (23.7 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.18.0.dev20210429213542-cp36-cp36m-macosx_10_14_x86_64.whl (20.7 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210429213542-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210429213542-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 201a0c4c03075026968ac1bb1ff0dd66cb987039e80814e382e3822fb670f108
MD5 70697ce3010f3bdec30508d0020c72d8
BLAKE2b-256 446721c815b91d2f2f6dd53d9afe6d37432bd4bb5ad9b5ff405a2a8b9494ce8e

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210429213542-cp39-cp39-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210429213542-cp39-cp39-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 3c6a410d1d0580878c969120ab3ad61138c1a07ba37ee3f90901bf65a2810f71
MD5 d91648b980e10d2cff21be9eaf584a1c
BLAKE2b-256 804d67256104e416e7f59b0fadd5a3ca70640f784eddeffeb3ca95bcf1f46cee

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210429213542-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210429213542-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 80815c0ff47c84bb3164389dafc91024469aa5ebb15be3d94f48653ecdf37539
MD5 95cfdc8b357488a4b826722ec7a381df
BLAKE2b-256 916c8ef672e0b3e06188eebf906186bec33eafd28bd30d934f37e150afd5f610

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210429213542-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210429213542-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 831a541bc1c39ac2753a7db34e743f05ed62fc2b442be853bcec624d696d383a
MD5 4c91c6ec8ba1ec818746cbc15935cbb8
BLAKE2b-256 6ff211474e845e137050693d041adb4bbf73e2ce58b7cf4a0e5af26200041872

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210429213542-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210429213542-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 1d64d56050ee3980e6104187d10ab1dfa9bd7d2279978d95865cc2101e23ea56
MD5 79339949de47d10fe5a39a0929abbcdc
BLAKE2b-256 10cc0939c630109edb3b330a7d08ea0ec7609d6298256d3e29fbbfe217174c12

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210429213542-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210429213542-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 4b1b8bf5cf55df133596245cb6eae5baf1330e62997445554f9d1397338b98ae
MD5 2e50d658d728ea886f9418bf901e6635
BLAKE2b-256 5e7bb9c559a8860fa89df03d2810bf239d43c9f3f2f079c728464f6d7fc7a31d

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210429213542-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210429213542-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 0121dd6b88190aa992c816250e5990890d0cb1bcf7795d9a84a62c82c70875e5
MD5 7a9bd8c3ebccf8302ab59bc4a7509854
BLAKE2b-256 58a14a309775e6a5825cac00097046acc62e9c8a6991ca40eb7d8829ea415b68

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210429213542-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210429213542-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 ed9776adfd8c81982a7e94d64e6c67080c877b437d78782e7c55ac23cb974e1c
MD5 a5b0c91806d1f2e129e2c3bc97929e9a
BLAKE2b-256 2193f3f1d9b80d1b6cc52924000080c89be7a977969620a21e0520ff7f7b4252

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210429213542-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210429213542-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 be833c84df0ba6d365db15819a59e81c835c566658b565a24a4e48628d699297
MD5 9f9ba4f91aec78faaae50cbc4bc2eb0f
BLAKE2b-256 db7190d3b16bfde465722d0d708d26a1bf23e973c814f5bd4788b3da79193704

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210429213542-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210429213542-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 c699b45e56ee0065e6ad488145446d0747fc042562d52b1acf6b4d71fec3e81a
MD5 798d78207fe34c9c80d988db57625b5e
BLAKE2b-256 346f6ea2575e490e23a28966d68d29254aaf16bde471ad2e76b018802cfc29b4

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210429213542-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210429213542-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 cb0642a25f58696a9a1821d618c36da262432bda4acb0d513a25587a57e8a756
MD5 2dfaa1d57165bda92c5957cc57038aba
BLAKE2b-256 837b20b1c32fa58dd06c2cbed28c54a6f1cd776fc2d5fd71d339ec61e3f417e9

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210429213542-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210429213542-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 212e8ca8531782723b5b559cb01bec9a1993ed7f859495a708649ad3cb2cca0e
MD5 98eb576f38c464b4b83826189c7fc8d4
BLAKE2b-256 57fc21adc80733132a6f5b2427cb204d8e251c27382a3b697c09eb9306d40664

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page