Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.18.0.dev20210501161304-cp39-cp39-win_amd64.whl (20.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210501161304-cp39-cp39-manylinux2010_x86_64.whl (24.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.18.0.dev20210501161304-cp39-cp39-macosx_10_14_x86_64.whl (21.0 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210501161304-cp38-cp38-win_amd64.whl (20.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210501161304-cp38-cp38-manylinux2010_x86_64.whl (24.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.18.0.dev20210501161304-cp38-cp38-macosx_10_14_x86_64.whl (21.0 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210501161304-cp37-cp37m-win_amd64.whl (20.6 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210501161304-cp37-cp37m-manylinux2010_x86_64.whl (24.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.18.0.dev20210501161304-cp37-cp37m-macosx_10_14_x86_64.whl (21.0 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210501161304-cp36-cp36m-win_amd64.whl (20.6 MB view details)

Uploaded CPython 3.6m Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210501161304-cp36-cp36m-manylinux2010_x86_64.whl (24.0 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.18.0.dev20210501161304-cp36-cp36m-macosx_10_14_x86_64.whl (21.0 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210501161304-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210501161304-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 1aacdd614b9089b5eeed8fb28cd90f4cf009dfa9f8683f82256e0d0b40ce77c8
MD5 683acf6051743f0fbd832aa024918b25
BLAKE2b-256 89569588229bdc966423cc8a191b3bd0d8f1be87a1367ab78819e6cc0d0b4f7f

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210501161304-cp39-cp39-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210501161304-cp39-cp39-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 5536049649635c9d6ae87ab60d4b25939bbcdc5067363b92913694b3bf2618cc
MD5 fbfb8ae438087b546aeec27193aef23b
BLAKE2b-256 f38c8c8e8e2af292c0691e49a7100687d4adf0a9df3902e7eae541dbcb1e2d10

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210501161304-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210501161304-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 f3665d00b73fef5c97cbec5b7bf093e9714ab19805483cfe4fd8e9748f8db394
MD5 f0ee0c20b6630be2520817cc37a3db0a
BLAKE2b-256 eb6690a42f139d3e89b18dfa9434300e18c86e6c15c19a628c7b8ff6d3dfc40c

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210501161304-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210501161304-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 709da00ee38ebb208ce57ecf6b6c11e4577df10a842ea114a74457bf7f6b566e
MD5 c1e483a58989aad9506716aae450d740
BLAKE2b-256 89076a7c27199b6ff6af9e6724deee8eafeb88448b18f0fb7dad47eaa2fb4d65

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210501161304-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210501161304-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 a8817e388fcd06d43daa640f4dcf363557def724bcfa3407e0ce5f0700a88b4e
MD5 b2e850191c607a5b876fa84a71498e0b
BLAKE2b-256 0101a09cce73711cd4ba7efcb35a2cc15220a26ea9e7cb0ab7f9afe79414632e

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210501161304-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210501161304-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 0eff984d4130fb783065aeb7e019b4c060c5277207859f27dfd958e4ce834cd9
MD5 0c0b824fb7b31c84d0a669c5c27f9fe5
BLAKE2b-256 065d36c42a1220bbc15e8ad33b4ddba51fe55455d5ef3c23668750483a3dcc37

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210501161304-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210501161304-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 6248527fc1a2a4c00a331c70e295d4d1c4f6c1dfc3c95b9091dd171cc26a3b5e
MD5 7cc35b985961608bb123da8d1a2d57e0
BLAKE2b-256 e355f3d77efdeae090894b86b8d2fb8bd4497669deb57604b46b9ff9079f80a6

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210501161304-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210501161304-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 ad91f188e45364db5aa89c022777b5917e4d1c729425343482c69a2b0ba0f458
MD5 077d9b795c2b0385bbaf723fa82529d6
BLAKE2b-256 4fa3099e105a54178cc5d73423ea9f4e0c72c636e63432a51ce6d12e6f80030b

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210501161304-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210501161304-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 500e638f72b20d2d1b5d1bcf09adb8dc4e5c731cdefdd3cd0899d280de4737b1
MD5 2a794d62bbf45979a453bf212254d793
BLAKE2b-256 c7d78fa5ddd785070a8330445c2a309a33e6412098cf64805d518547896139ad

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210501161304-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210501161304-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 a470327fb8bbaef834d0db4b90fff5aa1aff092792c593910d444955a8e79b24
MD5 cc5fb1d4830e125fef7b6ad6bbe38f1e
BLAKE2b-256 ee407457016ccd10d52c0173696f1108cc333a9493999784610617732f897fe2

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210501161304-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210501161304-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 b45bb459203bb0838d19d4bcbaa302a3d56b3d92fc91077632a5abb07398c829
MD5 0e230b5b48a5a907e0867fed5c63bcda
BLAKE2b-256 61bac9b11841aa5cca02578230743ef70d7c24bcb6d9d33da9e74236e7e1f073

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210501161304-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210501161304-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 edcc083454ddb8ac1d0e147c1d7ce93a49e1bce1ffd90cc90d967d1d9fb9d6e6
MD5 d36caa680b46bcc96bf7225ac01f36e6
BLAKE2b-256 97f7da3fa703484a2ead69a04f1363c3a18018e9e6977fb3ff1206875aaca956

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page