Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.18.0.dev20210504022231-cp39-cp39-win_amd64.whl (20.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210504022231-cp39-cp39-manylinux2010_x86_64.whl (24.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.18.0.dev20210504022231-cp39-cp39-macosx_10_14_x86_64.whl (21.1 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210504022231-cp38-cp38-win_amd64.whl (20.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210504022231-cp38-cp38-manylinux2010_x86_64.whl (24.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.18.0.dev20210504022231-cp38-cp38-macosx_10_14_x86_64.whl (21.1 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210504022231-cp37-cp37m-win_amd64.whl (20.6 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210504022231-cp37-cp37m-manylinux2010_x86_64.whl (24.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.18.0.dev20210504022231-cp37-cp37m-macosx_10_14_x86_64.whl (21.1 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210504022231-cp36-cp36m-win_amd64.whl (20.6 MB view details)

Uploaded CPython 3.6m Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210504022231-cp36-cp36m-manylinux2010_x86_64.whl (24.0 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.18.0.dev20210504022231-cp36-cp36m-macosx_10_14_x86_64.whl (21.1 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210504022231-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210504022231-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 44c028fd15cd11485a88301cad99187774509d51d13563e40af4fd077713857b
MD5 9f2b9ff3d2461eeb8fc749e8b3c9e071
BLAKE2b-256 574db026f4fc90a39d44a726fac44c8e2699f90325e3bf9ee10b24262db26e01

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210504022231-cp39-cp39-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210504022231-cp39-cp39-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 52d503988560be445f6e7260339c2e1f26a86870de1324eaabca7ef530c67ed0
MD5 9c1a43f141e5b984df37f43796b4df18
BLAKE2b-256 f6af4d441a66ed0ab3fbd294d845d2a3b9dbb52dbdd714f864889f6061f33fa3

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210504022231-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210504022231-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 096b28e71be482ba86f5e5e2917b6b979c0b4902bdff67f832dcb0ff4c335f0a
MD5 fe241484339cf57f671a2c7117b77f69
BLAKE2b-256 4c674c4acea091c04540a9146924c75b16b75789e1e3bbb797a6a2761d2b53c2

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210504022231-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210504022231-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 c7359ead41ef26fa83b0dc424ea2388c2eb032458134a582607b93675144a011
MD5 09ddb02e5e3ffe69973db8ee5e0bb156
BLAKE2b-256 0efaa82690c51e4e58aa5aae9f5c4618841b13ad93fef400cc90aa6bb1b993b1

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210504022231-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210504022231-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 8ca906f6787c67b1b9c25430c4a7d13f76075b6ad783d6ee4c5a113f856fdc99
MD5 170d37cc01aa2d244b6203e602055173
BLAKE2b-256 8352f40c17519481cf2a504c9888803a066aa1c7cef6a2654f062840383804be

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210504022231-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210504022231-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 6e6a148ac8a19793dfae282b2cd5c268422cf53209ca6f6b144efe88bbcd54f9
MD5 645fd5086c1589d55c19a23108f7e1bf
BLAKE2b-256 37f7f185a8f99cbf26c2ac97662426cedb17291436cd7ab5bd37c5bc35353ec9

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210504022231-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210504022231-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 261c051f924b29308dc527a8feb99d2cdf5c907a9176242bdead704e4f1e487f
MD5 a6babb95ddd3dac4fc785e4dc6bfecd3
BLAKE2b-256 35a9e3715b76b343daab75e41cf8875dd077a7f310ed0a30531ddf36de38bb68

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210504022231-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210504022231-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 7428078791bf09cdc05bc5517a606bbd2b387d04a6db2528669832755fba9ce8
MD5 6c492aa7a3031144e3e641c18a2a7140
BLAKE2b-256 4a9a1182c92add38834bfc74d22aca3cfa17db6a9e4b1d0dbba73c41b5548c14

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210504022231-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210504022231-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 9aec5e9dda16ed038fface53ab3b35f264ab79cd0907a90b04f557ca6877df5f
MD5 72f8c26ad886ee0aa975bc6b4cbed5d9
BLAKE2b-256 150fd48e58aa7271bf37b62f04124335ee2c198b12842b8fa2647454c6186ac8

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210504022231-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210504022231-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 15b88dd8f63c1b2884ae23d4f4f89dc7723251e42dad3f869beba0483f8e8ada
MD5 ad4e756127121da3b17b42abe6ccecd4
BLAKE2b-256 46bc577f83909b7e6b4a81949eedf5d723ab32978187e4c1e420de4cd41eb5fb

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210504022231-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210504022231-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 da876033bd0e1ecea8d1d935fa1d6e03a326d22af706821f4219e865f02bde5e
MD5 9bb16f40ca28f817a718a9d0d1dc29e1
BLAKE2b-256 a5815e79e7317b545e185924aaf3626cf7adccabaa6597a2912c1ed722a6f165

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210504022231-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210504022231-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 0034b3c6c84239602e8508b258d241a42f3853c3e7d647a074f8346f1221efc1
MD5 3142a19a731566f8f479be2e602a62e3
BLAKE2b-256 c49e6a4fad5da3e3c13145c26e9615a7d1eeab81ca1c51c88433bc8a7ff1cf3a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page