Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.18.0.dev20210505010904-cp39-cp39-win_amd64.whl (20.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210505010904-cp39-cp39-manylinux2010_x86_64.whl (24.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.18.0.dev20210505010904-cp39-cp39-macosx_10_14_x86_64.whl (21.1 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210505010904-cp38-cp38-win_amd64.whl (20.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210505010904-cp38-cp38-manylinux2010_x86_64.whl (24.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.18.0.dev20210505010904-cp38-cp38-macosx_10_14_x86_64.whl (21.1 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210505010904-cp37-cp37m-win_amd64.whl (20.6 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210505010904-cp37-cp37m-manylinux2010_x86_64.whl (24.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.18.0.dev20210505010904-cp37-cp37m-macosx_10_14_x86_64.whl (21.1 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210505010904-cp36-cp36m-win_amd64.whl (20.6 MB view details)

Uploaded CPython 3.6m Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210505010904-cp36-cp36m-manylinux2010_x86_64.whl (24.0 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.18.0.dev20210505010904-cp36-cp36m-macosx_10_14_x86_64.whl (21.1 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210505010904-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210505010904-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 7c28a12715c7123591de22038aacc90c79f5d7a741b411381fed93e4ee56f5d4
MD5 b188032a94e6df364c3d9dc2e2121432
BLAKE2b-256 888b76d5a1bd15fbe9df86aa51690606343c182ed74047a6f38380197824284d

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210505010904-cp39-cp39-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210505010904-cp39-cp39-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 dfc6eeb40ef772ded3521689c101ee6bfb3d56ef1a49163e31826c87ef3c7bd6
MD5 8a66496efb2caabb81eb2071bb8bf421
BLAKE2b-256 416efacf11fd37879535928da87271c15e946c3fedf523e398a89716114c9225

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210505010904-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210505010904-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 a6ce3d28cc20fce99ecd868bd3ba9d918515742d25e74541fe5bebb256c5e841
MD5 53b01f8b4288ad5d196b6210ff6bdb32
BLAKE2b-256 0eb937ec4523c0db4d79e24271e56e47705f4bc1ca72862ab2eaf1ae0c14fdc5

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210505010904-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210505010904-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 edae02a6e2f94be13660f1e439a66f813787626c70bed45dcbd1ed3031fe1c03
MD5 5c943a2d6aabdadc79b9f293d04a41c4
BLAKE2b-256 f683d2a920ac44e36d0138191b2fcadfa70f95623e9995c87b9880b7a801a95d

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210505010904-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210505010904-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 3a6d8f535fd130e9f55971d51ce0f247160c960dd595d9a12d747f14f967ca54
MD5 194ce8041eabd01973f6669ab76c8b8e
BLAKE2b-256 4593f09f15bdce0b9d2439751b1ae2371bf0debaccb819898749dd1971274e4d

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210505010904-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210505010904-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 09e5bd0017d831c90785f29ec444f9c69789e7b0d8c9217c3b51153838de250e
MD5 c4db43f7c4e1ef31fd250467a07a729a
BLAKE2b-256 74ff2264b056a9fad61164ed2d38ae6c65ef2b5526fbd5d30972eee0b6759517

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210505010904-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210505010904-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 24301dc6a4c88206330557d23c8920396cd1b4ab63cdcb8d2cbd488700db6503
MD5 bc6dc1811bb0fb9fee8bf895ef2051a9
BLAKE2b-256 11b8fa665f6dd2d4084a7556e9376cc2e02b439906bda0d70a2d443094b2ae31

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210505010904-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210505010904-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 01d81002e8d815c30aeb72afd769a4a78e25b79ce5a81372347411edeabe86a4
MD5 009d94f36e75544ddedb66477e166760
BLAKE2b-256 8c9f799ac7f69eafe93027fa6c6fd50ddf18c25441bcdc74c26abab64ad542ba

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210505010904-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210505010904-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 855a9f16aedb3afe9200db99872bafe0480b8e177e77c7ecc6e2defe0497e14f
MD5 cdf699bf815027690924199e7e522932
BLAKE2b-256 7bfa8e5bd3a9c9e754cd8342559e8f97fc9679bf255ad59e5879b301fafa7e7b

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210505010904-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210505010904-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 64c896136c869e6c3c0ede90ec1af9d554fcd68f9ecaf7ee86e93d4084f1de25
MD5 db71e6858a2ef7758d5b0c79b57727b0
BLAKE2b-256 ee89df51c1c504654af350ba95f2b6583d5194fc928853edaed8b58e3f50da97

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210505010904-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210505010904-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 c1020d0a3e537f666f67bdbfe518752d55591754a198c71610fd4a81301cd33d
MD5 8ba0288a8fa81cb380bd8a3d6d2484a0
BLAKE2b-256 cebb6a767d53492f758b970f652b1b109b95780787c114625bcd0a9e4a6d6f39

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210505010904-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210505010904-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 783db63a974ca58c635b8d7e7c579f8f9c6c7c16f09f9d3c57bc20f3b0b3f5bd
MD5 0209892b84dbb246b95f5ec0647a9a04
BLAKE2b-256 ed0d875febbd21f316f3d632d6182935303b50779e76fe5fad55ce1a81a7f3eb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page