Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.18.0.dev20210505034832-cp39-cp39-win_amd64.whl (20.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210505034832-cp39-cp39-manylinux2010_x86_64.whl (24.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.18.0.dev20210505034832-cp39-cp39-macosx_10_14_x86_64.whl (21.1 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210505034832-cp38-cp38-win_amd64.whl (20.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210505034832-cp38-cp38-manylinux2010_x86_64.whl (24.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.18.0.dev20210505034832-cp38-cp38-macosx_10_14_x86_64.whl (21.1 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210505034832-cp37-cp37m-win_amd64.whl (20.6 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210505034832-cp37-cp37m-manylinux2010_x86_64.whl (24.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.18.0.dev20210505034832-cp37-cp37m-macosx_10_14_x86_64.whl (21.1 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210505034832-cp36-cp36m-win_amd64.whl (20.6 MB view details)

Uploaded CPython 3.6m Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210505034832-cp36-cp36m-manylinux2010_x86_64.whl (24.1 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

tensorflow_io_nightly-0.18.0.dev20210505034832-cp36-cp36m-macosx_10_14_x86_64.whl (21.1 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210505034832-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210505034832-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 f099bb5fa5b97488dbd6bb7e836b4386d1bb5fa3cd681ac3c224d3c80e102f76
MD5 a800b1e90adb9e604b1bda342700cecc
BLAKE2b-256 e7cfb9dd688e74e23fc9f3e69c1bfb2abb16543fb4650afdb37b5f3d7c5c2a20

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210505034832-cp39-cp39-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210505034832-cp39-cp39-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 b200d4780162eb10b44949247d2307d5e21859126529057a4c960b215edc8c97
MD5 aa5ce3a0ba9b35b6bd9c2cf8aef418cb
BLAKE2b-256 625082bcfe43baf92c6bb63a768618b5aa5b1d2d6aa00ecba112f72373693c34

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210505034832-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210505034832-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 0ae573b195b5e9495a2c5779e6f01508dc369589dae67637e23cc315e1e3ad12
MD5 39b695065e6b769cdfed0483ba6f8d0d
BLAKE2b-256 6ab53f4292ac173cb3a812553cd205e11c19387d01c4921431417304cb654601

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210505034832-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210505034832-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 5e314fba102af5c1be3170f1837a61111f9080f5cd38d6d7b20dee5a0962e1bc
MD5 510aafde2dd7485d2ba366edeb482b92
BLAKE2b-256 03f684555b36a0b2d80b89bba548dff8a950722419f60ca6967d33c20343d903

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210505034832-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210505034832-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 6425e7d28e19b2cadadbdf712e12aaf4f95c6e187d9f213e38702638f01995fa
MD5 a06930fb12f79b39e50efef110a41292
BLAKE2b-256 975138af765b85471dd268dc61a221534255c2bc86ff85eef7775e5921faf60c

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210505034832-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210505034832-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 7043ed035ad0d4c0a781dbd873956ff8be094609f69b5c2d59d7a7bb9ab92412
MD5 76e2e0682abc1598503a959ba19f320e
BLAKE2b-256 abb978f2be4b2574089f3d8f97820bec15f485ccce8d03180651989846b17434

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210505034832-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210505034832-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 f29fa66a00b672df5026601acc8d7bee4f29efa774b32e11afff24070adf3293
MD5 7615d7cf2aae935a37e1fc0a61a399a3
BLAKE2b-256 aa9c747623f32382448c11f04bf78241fb57ae91284a2a0579552ac9e3b57881

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210505034832-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210505034832-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 a550f7d878b64a2846f180a8974d9ed4d732a6b7d45e73325e01ce9d8f96073e
MD5 29fdb0cad1988f3b65422ac1e21e33b0
BLAKE2b-256 7a36051cfacb2a7a0237dc1bc56be891cd82ded90c4f6a71ccc9c207072ec3e1

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210505034832-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210505034832-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 54b54f2462adaf7877d1c5e9cd97fa62cd9f33e97189e122dd6d0cc6e1578851
MD5 bd71ecfe871ea32190ecfc37fab15f95
BLAKE2b-256 edb4dfdb0ce15e9232fe775727f7e05e7b6ffaf0d2dc04fcae210c6fc26ae7e4

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210505034832-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210505034832-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 d7f8fae429858ad4535580045ee6562214b26ff3bcc198c55898b35078ad49bf
MD5 5432c4b0e17cf028f503856c0e42f6f1
BLAKE2b-256 56944b5b24c2fc8cb55cd3c82dfae989f27cedde839eea34a29db566a907ab3b

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210505034832-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210505034832-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 e075e69a72062566b9aa25524fab164e178e8035ded494376e3e4b239c6c7aa3
MD5 07c4526dd14ac92368c7dff72bc82d67
BLAKE2b-256 3f800230ed602aac613e3296c078458b1f222cfc7f2963d838543f76cfe0a9fe

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210505034832-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210505034832-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 d1d0ff8f4e91213166e727eb70b3101dbf8088bbdce400216eaeafd54471b801
MD5 fad465c4f727f8fc44927846eb0d5e6f
BLAKE2b-256 95fcda98cb5f75a26c5e2f1f4e00dde8f0cf6535192a5eb58c7073e932bbc1d1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page