Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.18.0.dev20210507012430-cp39-cp39-win_amd64.whl (20.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210507012430-cp39-cp39-macosx_10_14_x86_64.whl (21.1 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210507012430-cp38-cp38-win_amd64.whl (20.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210507012430-cp38-cp38-macosx_10_14_x86_64.whl (21.1 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210507012430-cp37-cp37m-win_amd64.whl (20.6 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210507012430-cp37-cp37m-macosx_10_14_x86_64.whl (21.1 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210507012430-cp36-cp36m-win_amd64.whl (20.6 MB view details)

Uploaded CPython 3.6m Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210507012430-cp36-cp36m-macosx_10_14_x86_64.whl (21.1 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210507012430-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210507012430-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 0a68980d53dddd7304ba1d34a37072019963b69b7ff5ee63d9f331bba8eefabc
MD5 ff67d7443a89a6409877a3fa31d50fe7
BLAKE2b-256 d73282b89622d9627cbcab307d4ef600eb940546f983eb960bbf82bf0ba7ded5

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210507012430-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210507012430-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 5a61479b331b0190c00065ce0f2a5969b70acfd7a9b2f040bb4adae398822acc
MD5 65f4a40ab5bbd8706114d861b3678e98
BLAKE2b-256 132a32fff7d86f76182f0556c19d760911514f1eb642f1e808cbd1b8931a3da4

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210507012430-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210507012430-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 9545bc052224341ea62bd1038ef4c2745eb4ec5676b811177f21eeab7976c937
MD5 dc94c36f7e976ac6ec6f0c9e24b3d842
BLAKE2b-256 c0cd5edb83105b35b6904ae04f7601de11badb047a056fc10750a13c2d215121

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210507012430-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210507012430-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 8da7eeb836102921bc5c93c44321a762f35664694916df9e367edd92154480a5
MD5 ce93c29cd7665097915d0af5f1d3bf28
BLAKE2b-256 648508736f9c53e6361994f23c6d33f50b93c880701a00808c9ecd078f047ca8

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210507012430-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210507012430-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 95d32d228baf9cfdc1c99dad9fd8ac69ebb863a149b7896ec560e15901bdc3b2
MD5 016be83bbcb55848be243e321afb0248
BLAKE2b-256 72a7defa5363a95cec3d0211cd37d90a58607eea77fb00521b561cf3d71b8ee5

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210507012430-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210507012430-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 a6ce6c84276c5f6f9853b95af260cb033e65db18b8db18aa7fc86f64cec16eb4
MD5 9117c230a72965e6da9f31268ff9931f
BLAKE2b-256 a0bb1ac25a3d5f87b957cbbdd46d64bc66738ef50984a52d3ab40e5c1711e4f0

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210507012430-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210507012430-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 b3936172cb1f405484c1bfd8d29353aef072c2efabc686b39daf06175621747e
MD5 91c70f7099795ad347ff0747a94608e3
BLAKE2b-256 45d95fbfe0319fefa469be30b4a6f1e0518696d7bed157507fb5c0c48c53b6dd

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210507012430-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210507012430-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 0966129e81c04f48e96a8595c31be6427cbda99e9cec6affb76b4a78fb066963
MD5 a88be27ffbcb5d6c89f6db8cb3a64417
BLAKE2b-256 1c4851fb0c8d1722ce00ee785fe069123d97ddf24ce8e359543b076f61936ed6

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210507012430-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210507012430-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 68aa3bd510d1a08647941a5e7d1514ebcb12f6c5e6a7ec16cfd8a93b6424efea
MD5 99af251c3d1418313941ec7ce55efae5
BLAKE2b-256 0475d86e952d277d30d7c399bcc5f642c0837ef3a432c24ebe12be6cec3c211b

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210507012430-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210507012430-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 16eb93ab072ef32cc5fb0e3214babcb10e8f2d484804bffbf7df317516b3269a
MD5 b578bbe18c707a306ab83aedbb0d6f57
BLAKE2b-256 ea3a96f189c184078f9ee514575cb20fa85896ae4ebc61e40d59da1ac391c0a4

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210507012430-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210507012430-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 ef140dd91fe247fefa27444940a7c81547fcd48a1cde6dc8fe04e837a10530ff
MD5 f4e13f40f02b3f45430839a48d565f4f
BLAKE2b-256 8b77b45d8ac3cd170d3a8020ff884d03264948987a2c944639199426dcfd4fb1

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210507012430-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210507012430-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 ae5640e113945af43167ff6fc5608c7d474368b386ad2973482cdb07b612bed1
MD5 19f7c298394c357d96a32ab66cc275f4
BLAKE2b-256 53ae497834eb1edc41f1acc1a10bba4fa2b6bc213d8e95865c648a7fbc957c7b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page