Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.18.0.dev20210507143109-cp39-cp39-win_amd64.whl (20.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210507143109-cp39-cp39-macosx_10_14_x86_64.whl (21.1 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210507143109-cp38-cp38-win_amd64.whl (20.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210507143109-cp38-cp38-macosx_10_14_x86_64.whl (21.1 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210507143109-cp37-cp37m-win_amd64.whl (20.6 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210507143109-cp37-cp37m-macosx_10_14_x86_64.whl (21.1 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210507143109-cp36-cp36m-win_amd64.whl (20.6 MB view details)

Uploaded CPython 3.6m Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210507143109-cp36-cp36m-macosx_10_14_x86_64.whl (21.1 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210507143109-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210507143109-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 5dea7b8e67e9f0bb971f3e590a918cdb4f89e3258b757d12809b8793c9f19fe8
MD5 7e3c9ba69dcbb715fa5a64f892ebf48a
BLAKE2b-256 316399549f816feaa2efc46c712234626800c23069c172e45abcc2d753d2c76c

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210507143109-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210507143109-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 5fbadf6b07fc17ecf07e37d978d60e974e9a2469fac76c94f25765f6042f9eb1
MD5 401d5f27019c9a7f71571dcf9699475d
BLAKE2b-256 19068ab256b2ef76929d5a52049be2adcd889a17bc65731e851ea69912c5e71f

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210507143109-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210507143109-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 a709a0624c793aee4e66619de6d7d0ca8558870d2a46a7ac559f9006c2431452
MD5 fb625d3348568986458694cfa524cff7
BLAKE2b-256 e9ad0e8454f111af84141ec855633a3acebe94d7b273e421113322dc98aadca0

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210507143109-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210507143109-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 d31f29d743142ab2de2cf14f8c4b166b3d1c38d21471b0c6fab2b04e09d9c365
MD5 fc0b76d87399aad669ce18cf8bbe64e6
BLAKE2b-256 2d7ee7bfea39f24d9912596e660e100e4ae3a98a5f9a796e733d13b3582d89bf

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210507143109-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210507143109-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 dfa909be02de949f515633aa2c0c6760605417305fe8171bc7f204b6df9e473c
MD5 59ceebfa549ba8b3f388c14d43bc5448
BLAKE2b-256 047729b2cfb04067b911bf2b91491fd2d105ea537ace2b11ee9fa651f9564775

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210507143109-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210507143109-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 be2f2d8a8f5bcaca3c30273b2d420f7fc850f924066a75c7d91b05fe9064d9b8
MD5 9ba4ec39364648a0e71d044243342b20
BLAKE2b-256 d737bfca606ced614f63f3c8152c7a581a8ec0a49045f1419e6ed31f4dd0b468

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210507143109-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210507143109-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 49bfb3d3d3f2b62d4158666773db6e68eed8b0469a1207a19f8a91fda458b4a8
MD5 0f94e1c431764f0c202cdcbacddff812
BLAKE2b-256 d926f2ceb95788831800bd9aa1fe03edd8fbf2bdfebd8b58c4f96dba1b40e276

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210507143109-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210507143109-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 89b744f7ab951558710f9f04bc672cb03a4cce22d8838f1fc66394dfe435d646
MD5 d1f4cfaea6ca67f3561426876bb256d6
BLAKE2b-256 93ae9ca17fd5d43aea46a1b1741deee2e961293506a2d017f56748da78362fc3

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210507143109-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210507143109-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 a201b4355fd3f559d1be8586bc185c5bb035b4b333d3642cf90f472e38d9bc58
MD5 02fcf287b7891913a66059122d4015c0
BLAKE2b-256 5a3a387cc81d5d7d275f6b4eb0258c8596f33aed0812c08fa6a1a6795c2821a6

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210507143109-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210507143109-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 a56e30ecc018f235666d8faf0197eb68bfd8d3fc73bc9e03d4430228c628af02
MD5 4102f5a661d57f13dc97909a126c2e43
BLAKE2b-256 48a504426b58a0cda5282ed1c4d79743dde9f7f187a5c247672a6cfdeaf30af7

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210507143109-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210507143109-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 739c3b8e723720bdd2d82c5a508213bff7184344ab13f7f9354d5d46da36ac61
MD5 b27778d22ab8814a22e94f206b9484e1
BLAKE2b-256 c4ea2530c397b67a9d71058b9c1a3d683756b66e3aa4636e6d2ffa9ec6bdf2e9

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210507143109-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210507143109-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 3b77d367df5acdf8d7dcc8fefe5f7cce5f82a558d03f92384bc326d3c1e365fe
MD5 207516699c058aad326b21cebe1f4bca
BLAKE2b-256 f2ebd19b3e704cb2bc7871633e11bf5c20b8c48b00e6f07e6eb9b4210cd03698

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page