Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.18.0.dev20210507152417-cp39-cp39-win_amd64.whl (20.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210507152417-cp39-cp39-macosx_10_14_x86_64.whl (21.1 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210507152417-cp38-cp38-win_amd64.whl (20.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210507152417-cp38-cp38-macosx_10_14_x86_64.whl (21.1 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210507152417-cp37-cp37m-win_amd64.whl (20.6 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210507152417-cp37-cp37m-macosx_10_14_x86_64.whl (21.1 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210507152417-cp36-cp36m-win_amd64.whl (20.6 MB view details)

Uploaded CPython 3.6m Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210507152417-cp36-cp36m-macosx_10_14_x86_64.whl (21.1 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210507152417-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210507152417-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 0248794710cbc314471833a05eaa7c1e02055feab60497582f25ad4c75a8dd1e
MD5 f394f673123fe7ab0c129601f7eca9d9
BLAKE2b-256 83b1da48bce6ade923455b9162e8e9c885ca63a0c99945730a45cb06306f357f

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210507152417-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210507152417-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 865f472b57d08271e2883b06a70ecd5f3bacdd57b2774886b2ec5737bbd4db41
MD5 ecab94d67dec4d2b15fc3b66fcd73431
BLAKE2b-256 660c568d36b4f0746f0e48688fcce64c3cff1a5652ac1255d873320c09d10cf9

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210507152417-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210507152417-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 ce24a51c77cda815def0a80ac5ffa5d35ff1e0bc7756adf3fdacee17fc21b1ae
MD5 3c444086490534a7f038df401b84ae70
BLAKE2b-256 a4222f38b01f5e0c6ddb49e5ffbd1559a616ca867c7c5b31ff5fb7820ef74efb

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210507152417-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210507152417-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 399e38619f2faf04ecb6d0b774181204b8b3ae07faaeb4e9210d7c6f9bbabc95
MD5 f4fb47c2684acee5ec86a5e20fcbc4b0
BLAKE2b-256 3881248b244245a2e73919bedab92c0f15122dc6be814b6431e38c36fa49f094

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210507152417-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210507152417-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 4816c9869db4bd92a0372eb8cb61756d75d8c4e6b912ea01e3e061108fd61173
MD5 27ee0c763809bb2f2a4c2c4abd046fa5
BLAKE2b-256 3d9ed669dd05d1d10083b0f8ef80bad544dd4d62b005b193a39ce67d04f98350

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210507152417-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210507152417-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 6e37630499994722bdb3678237afeda06b4b0808ba9f315c3dc131d73069fbdf
MD5 8a5d669a9bb64c5e71119eb431141ebd
BLAKE2b-256 697fdd67371710b12150199e22b43c701483455903e9b86ab9ebbf40c351c13e

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210507152417-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210507152417-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 946bdb5944f3fa638ab63040497aa047ae2cd4a46dcfe7b0dab71059d20d7dba
MD5 ec31852f43a6509f3f7a399071fb98c0
BLAKE2b-256 e23ab5feb5c7f6d7a19b11da9a2d62295250b060a9641eb8841a817072bd19d4

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210507152417-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210507152417-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 acc03a44521d2aa28db988227ef2df21568f7d216a4717df0142112d193b6099
MD5 a542542608ed748f118fad9fcff821a8
BLAKE2b-256 4085cd8c1c192e355530960e7452b627fc8510b04b58ad681a5ca28d7f93ce19

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210507152417-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210507152417-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 3825e47cbb0a5ff788a0f598deb678f857f4b1a4de5dca1ff714de86c6d07c8a
MD5 00235cd17ad828cd6aed20bb72704d6a
BLAKE2b-256 5fde0d8d835258a6f70c91e093386ef0802041a7a1a4535cbfd3a58e4c2de04f

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210507152417-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210507152417-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 2f758ffe37d95bb4d367a170c3250bb67e55df5d35cd568b8982a60b9a082bf7
MD5 136f18e4c7505d8d9c5bdccdeca53c5b
BLAKE2b-256 01a17454b15a8a0d4ecfa90686d095cc6a727f10b53159a06045da135a58505d

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210507152417-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210507152417-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 844ec0a04440a4d23097a1b3556abf9928583c3241560e35ed0ad7b1da4a032f
MD5 08c827979e7f6d938c9f9a74e3732a87
BLAKE2b-256 f255dfa59d3378209e0bb3a5f4a60d356d7cd55bce374c2ae692d06db82add54

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210507152417-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210507152417-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 58adcc618fee81d3521b5bad2e4e0c7666cb061bc2a22d7db32321640bcb4e0c
MD5 8fd2685d2c073936b9258a3135c270c6
BLAKE2b-256 94ba568cf9c2d41104f2010114be5f0ea0ec7d6538d035a0c2a858f91c6e4f17

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page