Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.18.0.dev20210513033556-cp39-cp39-win_amd64.whl (20.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210513033556-cp39-cp39-macosx_10_14_x86_64.whl (21.1 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210513033556-cp38-cp38-win_amd64.whl (20.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210513033556-cp38-cp38-macosx_10_14_x86_64.whl (21.1 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210513033556-cp37-cp37m-win_amd64.whl (20.6 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210513033556-cp37-cp37m-macosx_10_14_x86_64.whl (21.1 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210513033556-cp36-cp36m-win_amd64.whl (20.6 MB view details)

Uploaded CPython 3.6m Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210513033556-cp36-cp36m-macosx_10_14_x86_64.whl (21.1 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210513033556-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210513033556-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 063f8e3b528e8e371115b4dc3f4d0da94559c3102cdc5f3cc3c72c72210ac0f9
MD5 0fee04c0c466545d422c77d69db05798
BLAKE2b-256 552a0917cd91ccf9fce9b728fa4fcbe77afac92cd6614d92945cf3778f6bf4cc

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210513033556-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210513033556-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 f7119d1ca7195b4a7604063a25c4172206ef82eb5a0bd97b928e7bc6424ba067
MD5 9b23b4a1c43334b154046370cfeccd0c
BLAKE2b-256 b7d2612690656242b7902489b491c29c25ad2b3827b3961c7a4cf4a22a3e075c

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210513033556-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210513033556-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 2c77f80ca820ba9ae6288fa5fd1c3d3072fbf7e7558dcfcd93d2173ac2fb2819
MD5 7ffe3856d36efad96a7080a820e69737
BLAKE2b-256 880880bbf9e74b5cc6f9a70ed7f577c2e5fa2368dc83765272f095cf9d107f5d

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210513033556-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210513033556-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 8fd458cdf51f88b68cb61472ec0655eb0725afdf8944ee47ce98c21aeeb0970b
MD5 2e200f041040a02f55dadcad3789814e
BLAKE2b-256 c896c5b7c974afcaebcb5094eb19d69e52c06a5133f612fa971da4dcf9afc4ea

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210513033556-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210513033556-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 2ade37d461825fdc5ea754236a4261254504a0c9006dc799e6b7be2e58d4c28a
MD5 1d9702df38ac4f57c1c9b525040bd4e5
BLAKE2b-256 bf4ec44e8348a700db764d1887bb517e61f6059d407bd6138a5fd87f97642648

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210513033556-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210513033556-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 d16eee5e1fa4dd84a15d4df9920dbb59ec810b8a660adebd759fed252c9bb593
MD5 cf1c971633c7d0cbc1d1f883b7b69b21
BLAKE2b-256 6f0e5210799d32c2364f1bbe170aa97874cb63cdf82bae534e004fdaa406baef

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210513033556-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210513033556-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 490650364a0d9ca530c71394ec263989e5f45fd28c637c9ee5f375c7101a26a5
MD5 c06a8f6b2b844a42c9302ad637dc6cfc
BLAKE2b-256 408723420245c94346a929114272f32619bac720128dc592dcf2ea55f47cb1ae

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210513033556-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210513033556-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 30463bf70138275c9303879d79da5d21bce4c6daa0fc0c6c96d7478f954647b2
MD5 9c106ad4428302864e4452431871f48d
BLAKE2b-256 dd761e2f3e459e8a2cf5d86a39ec7cf509f5f045c46980956b064570ea85bc38

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210513033556-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210513033556-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 b7d0823dd69fca51e9378432271989decc74453695c4f94edc0a07408db7f26b
MD5 99f7eb9c2c0b753ebce8b4f5919bf4cb
BLAKE2b-256 1b5c3d4e5474bac753c27d84fdefe1d5edcde33599d2b9e98315edc91647e21c

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210513033556-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210513033556-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 e04e11eb5caf1dec2b19b71f3245effb609839278e8a4a4386cb503ba485eb49
MD5 f003215d30367954a3a73a571accbcfb
BLAKE2b-256 be86ca298a0e9c0a6be968360f99c62394349ef78224b9b7ea9d69a37fb956ac

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210513033556-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210513033556-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 9a962418748d8e203681f7f6aee8a48280812bc673cb3c856048a4fea50aea87
MD5 398d42d2e54ce1822bd626c6fc75727e
BLAKE2b-256 bdcb3366d2dba84ffc7eef84c04354729e7a5a4ba35403d70245c26b77aa8484

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210513033556-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210513033556-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 db4983e0b9a63e93e1df1288c6944a3d980a2eea839d6f9b20f2c5df63f74ba8
MD5 6672a7dd66a8bdd09200e6676b69f4d8
BLAKE2b-256 39c52ec99dcee9a941ef662eaa401530ae2fb45c0825994ee4f2152d337232dd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page