Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.18.0.dev20210513213318-cp39-cp39-win_amd64.whl (20.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210513213318-cp39-cp39-macosx_10_14_x86_64.whl (21.1 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210513213318-cp38-cp38-win_amd64.whl (20.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210513213318-cp38-cp38-macosx_10_14_x86_64.whl (21.1 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210513213318-cp37-cp37m-win_amd64.whl (20.6 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210513213318-cp37-cp37m-macosx_10_14_x86_64.whl (21.1 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210513213318-cp36-cp36m-win_amd64.whl (20.6 MB view details)

Uploaded CPython 3.6m Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210513213318-cp36-cp36m-macosx_10_14_x86_64.whl (21.1 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210513213318-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210513213318-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 b4b05d53dea367393dde9f80b94d2bd0a44378dc90d8fd77bfa26987bf0b3a79
MD5 fc1b72f771013f5a73e2faacd7f0fc91
BLAKE2b-256 53e9acdc87d82d9415110ec3463289e2d71c9a89c5953114494c50e810f6415d

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210513213318-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210513213318-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 b434fa4503b45e659a23b0ae69ae3905cc62f261d6b3a78888670b987b035c7a
MD5 af2801c67efa9773f0d5726a7c6ee7d3
BLAKE2b-256 9c5e84d76d9ed4525b9cec3986a3985ef4bb7810188a7227ddf1a33f5686b32b

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210513213318-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210513213318-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 3d3423e3966538a1ec6f9f3c08a62bde5dbe3eee2b78c77d1311e12e0712cae1
MD5 72c93d843fdbb3c4cf17fd2e78651696
BLAKE2b-256 bc9d3f5f0d7bf3f48a332423d32e7ae9c7ca607e75680ed7c2c8df24e8dc6849

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210513213318-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210513213318-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 b9944a3ab3612de8c9acce87b35c248235d9bd8583cc54c0acb270503c1a1a3d
MD5 c6b1ad5b4b4b21f4aa880461b2d4519b
BLAKE2b-256 5ae06d7c2aaaf56fa97a7bd8b80655857ada684e7e1094f38b77d359c56928f0

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210513213318-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210513213318-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 b75b8035d1358d126167947f7aea437253222a51c17cf9617fd69e3ccb025473
MD5 b7dcc59e88953de5ba65b6273ba9bfba
BLAKE2b-256 0c176664c7f5078996b5ea2f2a851df89e28bc7fed33afecb19e82b1a4ab3f1a

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210513213318-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210513213318-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 6d1012cfb1f088ca310f181032e4c42ad955c93ea0d7767c2d16c5c70e78c4cc
MD5 8e7d49abdee96675a6bc832a6b33551a
BLAKE2b-256 5de2906b1b062dff2dccbe7846b994ea69372420f379317ae52d5f1878af431e

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210513213318-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210513213318-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 4bb342d256d101d690cfbc49e0ee6d69dc4498639eb41521909316359e91115c
MD5 2ac4f58e58c201b4882e895415f81679
BLAKE2b-256 d9d48c43515ad65809784342af8f3fe2aaf8db3210e8a574a0d3de54fd587499

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210513213318-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210513213318-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 64cd70aeeb4844db025ae1aad0e2e83a94e665fb029be18969b9edfbd8674de9
MD5 d802cae8b4991b309ba2c4d4470812eb
BLAKE2b-256 fe0ebc68cdbee55a3535d3b2a62a81056a324f03ce870b17253605afa112b3b3

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210513213318-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210513213318-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 4a8b923f5dc14e9ccd56ae176664febaeb9c878edd1586709a0209cb455a3516
MD5 770e8c62284ab940401be125ee60b54e
BLAKE2b-256 4a8d3de61c232db6e9ad48ee08096e1063c63d26d4d5ab216752174f8658667e

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210513213318-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210513213318-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 dc04fd79ae9ef71760baeeb8075fb9b5e43fb2211e564b0ce70f7e659c1edde1
MD5 d5c40638a5095dd0b38fd69e4b754641
BLAKE2b-256 84ae9dcec09fc31c3513d8da5b5dc51c895aad3705d5251b3f56780fa95e7384

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210513213318-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210513213318-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 6b1dbe880397a0faa91eb26f58625c3c459d22e925f9a5538b7ade20ca6cef33
MD5 7c702d157152d547ff47cc7af708cfa2
BLAKE2b-256 f087ab63717abde481435b34c332cc803fab0b705f6bde1dd68358e3b91d4d39

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210513213318-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210513213318-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 ba48ed072f71b10006675843b4e4e57f6b864a0368f7f473f0507346928b38ef
MD5 8cc8f897371cf8eb21abfde10d456db3
BLAKE2b-256 698e4d3d6097e6c31fc98039d4dac3794e448229d474c7a83bbf0c03653c71db

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page