Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.18.0.dev20210514015711-cp39-cp39-win_amd64.whl (20.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210514015711-cp39-cp39-macosx_10_14_x86_64.whl (21.1 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210514015711-cp38-cp38-win_amd64.whl (20.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210514015711-cp38-cp38-macosx_10_14_x86_64.whl (21.1 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210514015711-cp37-cp37m-win_amd64.whl (20.6 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210514015711-cp37-cp37m-macosx_10_14_x86_64.whl (21.1 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210514015711-cp36-cp36m-win_amd64.whl (20.6 MB view details)

Uploaded CPython 3.6m Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210514015711-cp36-cp36m-macosx_10_14_x86_64.whl (21.1 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210514015711-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210514015711-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 040bd05522231fe997e371585dac3e50c493712fd22403959d16d8c6a9dcd186
MD5 5f0c00ffd708fa243677db75b7563a3f
BLAKE2b-256 1083dba98b831e422a08c9677ce42a00af957f3ca7a3833186b19d823c9eb0ca

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210514015711-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210514015711-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 c988fb347fbb55ae8818e000abdf62423b8b90144ae35bcf88b4645189f971dd
MD5 c81c7e5d7247f61eb419efe2fd635f05
BLAKE2b-256 7957a1ea2ea18c178982d07608b6dccd69311e1d92e44369a17eddd6b72d74e7

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210514015711-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210514015711-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 421174ddfa7a8562b591f5dd2bb3b6bd3d2d7a295539fc7eae9f050c33fe8791
MD5 bfe6f255ef327f4626790a9e8e999e18
BLAKE2b-256 0e2387e1f062b8f9eec394d0777f0a3242764c3c83ef5d19aef410cc703a0f5c

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210514015711-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210514015711-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 9beeadced421d2ec5af3d302da4c0b36a9dd748a79bb7d1bd7a61464f8bf2294
MD5 abfe60a89992097b5991a64b973860a0
BLAKE2b-256 3800d3bf5b8d97e723b23b484309c7e388891bf3981cefa57091d58190650891

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210514015711-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210514015711-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 cd077c0227cc9f5919d97cef9d7efffb59e3ba1257d234170a36645fea32e644
MD5 77dcd2b8606c278e87d0cec60c84fb68
BLAKE2b-256 d74ccda5f304d0688c9846fdce3aa533c89c4550a344c6e4118552794de07bd2

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210514015711-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210514015711-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 3871321f755f9617877d213c66e05b9c7be0be93f99dc3a40352008f5bba0b12
MD5 59fb903efe43a4d9ea166dd3de9f4575
BLAKE2b-256 bfab463dcb1538a22fe7515644e3125d4a752cb754be28af19fe3a3f67856abb

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210514015711-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210514015711-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 e108af768235e5ad39d4df5beac63363a9f24f90096c47bf4cd41636d9cf820f
MD5 b342f30c6b03d72b2248f4dfd49d68c6
BLAKE2b-256 d0acfa114922ce3076a26e7999a3b1cb971101c01c05c33e32bdd2da985f447e

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210514015711-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210514015711-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 8bf6d11bc7b5ea855c63c96ada25e391597679e2bf9056717f6ef7606bd0ca10
MD5 dd09cf96317e3e905e0bbfac7646f7ae
BLAKE2b-256 a6c84a57876d53968be2a7f8d60d2c8333cb5856654a7686287b949336ee1e38

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210514015711-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210514015711-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 fd7f1d9552b45c4444b0b2d3da8c3e2b26a01362078bbd8a206951cca880ea68
MD5 fc7cde3d2ccf1b02e42a91e12d71c352
BLAKE2b-256 973844cdebed298f963dbe88bb1a0dc0a2550a71274767d4c9c8c21f8c3838bc

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210514015711-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210514015711-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 fc44cca73404a5599562984c52d6b64a146df7a9b6af4c925d3fe5ccb1b561b1
MD5 47fd7f1485e8e959b4c621ca339aac40
BLAKE2b-256 22633162bbd4ed2d4ab105a3489533f2179aa13bbd2e35f0034fb9554c696eef

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210514015711-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210514015711-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 5a943ce77a77b98a2edb82c6b43a4fbb5dc99150a8159d24d8730992ecffec0c
MD5 2a15a5a812e423b5aa0012f3345f6fcf
BLAKE2b-256 3a133aeed8af6ed7c922f95ab3cf130d0e0d7f9b7d00ea50dcadd19e8cd464b0

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210514015711-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210514015711-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 22e489733fbbe514e8a84beb48d6df47a4909e68ec93bf71cdf6e77e547a624a
MD5 4febfc7f79bb25e8778a155f50d684c5
BLAKE2b-256 27086fc19f902ccf3eefcb0dbdefd5ce2ec0d0f3f8a33844fcf18dee7eee4d16

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page