Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.18.0.dev20210514164137-cp39-cp39-win_amd64.whl (20.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210514164137-cp39-cp39-macosx_10_14_x86_64.whl (21.1 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210514164137-cp38-cp38-win_amd64.whl (20.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210514164137-cp38-cp38-macosx_10_14_x86_64.whl (21.1 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210514164137-cp37-cp37m-win_amd64.whl (20.6 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210514164137-cp37-cp37m-macosx_10_14_x86_64.whl (21.1 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210514164137-cp36-cp36m-win_amd64.whl (20.6 MB view details)

Uploaded CPython 3.6m Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210514164137-cp36-cp36m-macosx_10_14_x86_64.whl (21.1 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210514164137-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210514164137-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 25bc24417d95973bffb274d8fbadfd725cabd188e6af4920dc4353fef30c5da5
MD5 defd07c92f5498fc920d5d65d3ed0c02
BLAKE2b-256 8863deb4128735d810756ee5e6cea424897012e2087f6695f6f3a79f99000b1f

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210514164137-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210514164137-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 757a5f86f63841ac861d8cf49fd876f6d5dfc7cccd8455fa538fe02530967236
MD5 82b7d004045bac93fcfc199400c38a93
BLAKE2b-256 49fe14af6255f039c637aba49fd245b11869489ad90710b6826aa80292fa3a97

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210514164137-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210514164137-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 26198c6e5b00c01c36785f3254e15f48e82dd7428f29d1cbc0ce364428548ee7
MD5 b39448a634483865f6fa4cc1da436b31
BLAKE2b-256 6ac2621d7adb941159a2aa33b6945209ba987bbf12cd33421c9e44ea9fa48f88

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210514164137-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210514164137-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 54bcdfbe5b33151210a5db9ad46618fdee9485478f7db80a363d767f35c8de33
MD5 0423cba620e04b231ac5b08c4aeab4d3
BLAKE2b-256 b1dd52f87a94768b06fda12b0d2d2aa80a6d16f65bd55a4d933b2e6f507c5aea

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210514164137-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210514164137-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 5b1e1da85880d68513a2431d4ace4fd085d63fcc5c6c5df9565411ac62a91416
MD5 c699b1a35686a127ad73697051f2fe5b
BLAKE2b-256 bd48fd099684909670b510d0a8c31ce98801d4e11c47550d17d5de16415533e4

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210514164137-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210514164137-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 32059d669d137e03707b9577d509c442dd2b561c4255171fb7cb3cde7ee15646
MD5 74d709bc18c58db720e86fd81d73c70a
BLAKE2b-256 d871de675be29b4dc57e44d800bee45e24048c693b8aa2d5a367de6adabfea12

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210514164137-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210514164137-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 9c96a1e4a3d620bd079516573d1de4a8ee8fb4696f2aafd57ddf81acbac26652
MD5 00b4ae38b95af65126bae73d63bd9676
BLAKE2b-256 a622227e417c54ed7be86ea1eb9715386d6efb8b42d339f7ae2a245570d2ffee

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210514164137-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210514164137-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 bb91dc402d7333e4ba83feb8b7e711a37d0a900b8a0e013001a6b16c34ca8e15
MD5 fbc1c76fbca5b0f45a223cb650a35a6d
BLAKE2b-256 48caf0699ead6851e909e622f314cd684182787c357b407b32bc2d002cea4383

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210514164137-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210514164137-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 94d030ef8b671c0281478b0010718497f0a5bc2856fac0ea4a85951919a6dead
MD5 7c441d84421fb0ac61001f567457ae55
BLAKE2b-256 7c89a95d3b40b6b96dcead51e5e3b6e89b50dae67a00227f310df77c8b15fac1

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210514164137-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210514164137-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 bcf8c49cb83c9aae5383032cf9e94f889f452fd0deed35b7bef54180e444eda1
MD5 7621d3fcf59793df89a0e4890832337e
BLAKE2b-256 0b615fdb30c2b118bdbacfe8ab11cd54a50d3f32414ab46334418f70d6cda99f

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210514164137-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210514164137-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 77b0ae98456bb942e41ed14f83f18ac406039362eb70e08260cfb7d9f5ac4cd7
MD5 de3e438326f46007e45039f15557b8bb
BLAKE2b-256 7dd24b0a5cde3e0856e39674b15a0bfdb8608b7f12ee879f1719e9be14284717

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210514164137-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210514164137-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 0ec2347f8eb0124f6ddd4a194b47f6424cf6f9d7f9746a4c7cb976a2992a2975
MD5 af9b84efe5b909cbb2cc06791a152ff6
BLAKE2b-256 5bb626ec3110b706817529c7ea1e1a012e3f144356938261e00e968017ac20ce

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page