Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.18.0.dev20210517085935-cp39-cp39-win_amd64.whl (21.0 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210517085935-cp39-cp39-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210517085935-cp38-cp38-win_amd64.whl (21.0 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210517085935-cp38-cp38-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210517085935-cp37-cp37m-win_amd64.whl (21.0 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210517085935-cp37-cp37m-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210517085935-cp36-cp36m-win_amd64.whl (21.0 MB view details)

Uploaded CPython 3.6m Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210517085935-cp36-cp36m-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210517085935-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210517085935-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 c6666378b6277cd48b61d3ce8b523b53a8532b622d0c2323d0337644d8e39e63
MD5 70d5b710d2f7e77031975ac5322b9e2a
BLAKE2b-256 1b7e55cd96a95923bdf8c3a956484a260377640e850b02eddba0174df441e123

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210517085935-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210517085935-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 4730fb9132e0bc63fe8e422adc56d9fa6c41991b68c6227520bd54658d6ceb96
MD5 29626d5569fd61a0a761612032ce291d
BLAKE2b-256 ac70b9e6f47f76c4ed23f93eddef9e9851de457b16ab1579d6ce5f32bf7ad1af

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210517085935-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210517085935-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 c1e299336b4154ac719a54bf8e1ab802d758ed6a71ad0148983e500300176286
MD5 603dd7d1da3476041f76cfb61fab229f
BLAKE2b-256 8f85789704b68acbe2393d72a4ebed43c03d60f4542df1d0524451fd738a218a

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210517085935-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210517085935-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 8072697e0e27a4f6f28f85807a45fdbd9bf84fdd76b5f0bb8adcc9d4f9e5db60
MD5 63d95f8f1d26f971a75537aee00a5a83
BLAKE2b-256 60369781c10c23a653627ad87823383c3e2c9140610c1142e7158c81752f776c

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210517085935-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210517085935-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 8a1e9f33eb788801aee9b48ac4a333ec4cc82affb560f73a66c83043eba74219
MD5 7f85b077966426a74318236587d3dc63
BLAKE2b-256 8c8392a1434bcdcd34a2e58c9540484f7dd1a3e4697be45f0bc3a4d8a7efb298

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210517085935-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210517085935-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 27e36c5f4becd825483f67b62a5be86890dcb3f765ff8566b7c7488a9d85b174
MD5 6858191420ea7ccebeef58532f568fef
BLAKE2b-256 910cb3eb22ee762655d4b2c262f2e56d7276c733bafcb8cebbd468cdcc41e9c9

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210517085935-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210517085935-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 20996f69b9823deaf1dbc5b19dc7af28706eca65b2f43b7ccfae5633c66b1c6a
MD5 f9575b9706f45cd2fc7de11964f4ce9e
BLAKE2b-256 e482e76ba2253f7a22a39709cfa5f72e2a1eec7ab4daa2947c1950aeb4ff1f42

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210517085935-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210517085935-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 818afb18f3615349266c78132290e6a2b5b19778ab917efe203846f7755d8e26
MD5 c99b6695e3a6864f5838c65ffa5ea8c4
BLAKE2b-256 c160f4660095e23537206cfac66ab7a1fd8c1289c4ac61a59a4ebbb439cbf4ae

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210517085935-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210517085935-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 eaadb8b813db67dc44eacea5806f4eabd74afca666b1486c0f256e95ae703308
MD5 90f010e8e9730949d6291209bf7d15c1
BLAKE2b-256 3f504ae6cdc559cbe4675fb6174c3cbc6d563d90f2c4c0fafe3d5bb232dfeb24

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210517085935-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210517085935-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 d7d2612203f317ad963da3924296af3b917460e199838ee01e0c304a5494ec5f
MD5 ef1e1ea016fed85dafe5ca116941500e
BLAKE2b-256 a1efb2b40db4c294a4f2d13e6317121b32942313c11375e2257d8bed31da5977

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210517085935-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210517085935-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 81883b2f9a07650b37d5d7c0fe4faa72849d9ddd129bcf5f0ef8b5a4cf34289b
MD5 b910c10072623f9c708b5af0bb89e951
BLAKE2b-256 44bc424cec2e2ad174dfef9d92db36eeccd8eac08875b65e2783df9a74f49c0b

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210517085935-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210517085935-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 03471e25438b3c6b2791698293e51bb0b77211fe13752f1f3bb8b5036718b68a
MD5 49f3da9dd1e29deada817ddf0a8d3ff2
BLAKE2b-256 ce07d710063210dfff1556bb6ea2dfee7825596da0422af8c67384f80826897a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page