Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.18.0.dev20210518011521-cp39-cp39-win_amd64.whl (21.0 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210518011521-cp39-cp39-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210518011521-cp38-cp38-win_amd64.whl (21.0 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210518011521-cp38-cp38-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210518011521-cp37-cp37m-win_amd64.whl (21.0 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210518011521-cp37-cp37m-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210518011521-cp36-cp36m-win_amd64.whl (21.0 MB view details)

Uploaded CPython 3.6m Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210518011521-cp36-cp36m-macosx_10_14_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210518011521-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210518011521-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 3ec9fc4000fa64872c93a4018b143a4aa46baa46e62ce5c6dc3fb7ac574b7043
MD5 b1cf9c215280c68294f69321a9547b79
BLAKE2b-256 18388318a6cc261a049c284892c74d90e7749d97d60a5e83750b23809c768b29

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210518011521-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210518011521-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 3b6539bc952c6360fcc650789c69177ac4e869c4f7e72dfa417ad85274f06b6e
MD5 de9190229346ac43c63c559ba889d11e
BLAKE2b-256 4079c791049cc16cf0c2e489527d8d319fb4b751163a66aae865ab576b3132df

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210518011521-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210518011521-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 dbecc12c012f1136c78b71b593df792b91560d95d0b447745a921a996bab3853
MD5 7e6ce42e6e24984f69f9b24886a64f90
BLAKE2b-256 9b72dc5698e11e7493b628fc3feb8d8a572d109dfbb122d1a4bd6b5012014841

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210518011521-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210518011521-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 fcdcd010b7a3a60480789ab797fa2c29796e725469ec98152cc43249df3e4351
MD5 81d5cd08bb2a28042059ed6a028b3fdc
BLAKE2b-256 6e4d91c2ff95dcf8ece0e2103bf421a381bd14784fa69316b75e34d41c260788

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210518011521-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210518011521-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 5bf4ef71c5b6422fe0a7ddf85a441b06e5d820a857084c821be17c84c411ae5b
MD5 2e1861012716cac7bfc88a3a2ee1b7ef
BLAKE2b-256 ea627b10ee0475a99421f4d4bc365ac3bd74639c48a40c167139a9af11b1a71f

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210518011521-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210518011521-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 9f58bad28afde8854dcff76da8e74f036c0346cd3290a0085f2368384898172e
MD5 dfa263fbc47250d6011bbd2ef5b03d82
BLAKE2b-256 2367ce34876c13a31cc6c78ecf77d1c8fd2368654467e2e5317f65e675bbef3a

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210518011521-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210518011521-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 3f6f7a12f68389384fbccad857b7a871d01a41e0fce3881c6bf21a1364b299f9
MD5 a3c5d7108e5f1ec9e695c3ade49100bd
BLAKE2b-256 bb6f8808b3e9f22bc6573e4e1258d795978109cb3b7e1bce3a1408b5145d03f1

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210518011521-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210518011521-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 6ccaae8c2a37f8161af42b6ba3f6e3a488fc9cf502328d28a5fe6d52c1caf6e8
MD5 8f7b10deccf8a26eb728373b469cff63
BLAKE2b-256 f2e0deef2ba9317ac11ce55e802e5b93cddf5eae573cecf89d9aac209280df7d

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210518011521-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210518011521-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 8ac0f5285355c0c4088c3d5552c0243798bdcf6c2f198a50c2ae4cde91206110
MD5 ebbf9bb9142d9e5d997c1b4a7ddfd9fa
BLAKE2b-256 cf922d1a7ea73815648736fe4a007e587c63204e07cf8e20861036da8b509772

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210518011521-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210518011521-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 5772b74daf76ffbd893b6a1dd5920064bfe6661f734523ff67c107a807a24180
MD5 ae873acc878e3f639d3a222a4fe34caa
BLAKE2b-256 77b52bf815cf2caf3d136c69689b4a42edb1e1b913738ed5ff5dcec054a6d419

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210518011521-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210518011521-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 71038d8fd02a8f83ce12e8ba6b1fbe3b8782d704a5d384fbfc335353e7c46b33
MD5 a1b2fe6b5930d618a8dc53187c9d4fdb
BLAKE2b-256 2343fae25079253af861b6765b9b2102acafdf9ba01359945baa3d4fa97a6e6c

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210518011521-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210518011521-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 a143a177bc4191b1fd7ca8daf39e528840e4787d6a073ad235f0420cfb2d014b
MD5 41b1a326329203fbf9ec1ef333b4bcc6
BLAKE2b-256 210bca73cf1734806e55f368cf57c52e43614cb886b1561eb7b69bc6ebb40975

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page