Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_nightly-0.18.0.dev20210519162850-cp39-cp39-win_amd64.whl (21.0 MB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210519162850-cp39-cp39-macosx_10_14_x86_64.whl (22.7 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210519162850-cp38-cp38-win_amd64.whl (21.0 MB view details)

Uploaded CPython 3.8 Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210519162850-cp38-cp38-macosx_10_14_x86_64.whl (22.7 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210519162850-cp37-cp37m-win_amd64.whl (21.0 MB view details)

Uploaded CPython 3.7m Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210519162850-cp37-cp37m-macosx_10_14_x86_64.whl (22.7 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

tensorflow_io_nightly-0.18.0.dev20210519162850-cp36-cp36m-win_amd64.whl (21.0 MB view details)

Uploaded CPython 3.6m Windows x86-64

tensorflow_io_nightly-0.18.0.dev20210519162850-cp36-cp36m-macosx_10_14_x86_64.whl (22.7 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210519162850-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210519162850-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 741b61a4dc8af9e3e76b376184f4be78496497e3ec8025004829cf7ce1ccf60e
MD5 7240c956fa3cb8a9bba955e2013dedb6
BLAKE2b-256 023e7d08f2e174074c3ec222d1d4c24767cccc74392be2283d3f65d92b9b9568

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210519162850-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210519162850-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 f08fbd373d870a151ca74b0eabbb05582fb9277c7b6720a7107f94485ddf105a
MD5 7c3198c171a50943fb8c53de223afbff
BLAKE2b-256 b34bbd34072d95678c583dbae794b67db2a05aff746eb9bb03234a2346abb7e7

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210519162850-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210519162850-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 e92cb4d6a5c98df181e3805d3cd4f156f2945baf5c81b9eec302f82605701c4a
MD5 36a597267898a3ec270504e49d487923
BLAKE2b-256 1597f039ed1290c9b4c5fb78a1d83c636a68e0bf4f76c0c57a58e70d935d4e8d

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210519162850-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210519162850-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 b8cd82eb8c5b3876bb353bdd66792f2eb2f83aa3b6b7621f81d474f019cbd74c
MD5 b4b58001643941a2cd5bf5154b89e307
BLAKE2b-256 be5975bcf36ecf81f1cae40f2ae7d2ac1e7598611fe4acb564689e41e9f2bc47

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210519162850-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210519162850-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 1f4ed848243d1f497e83178a4715c4271f8e0761c53d1fba1cce5e2863a611e0
MD5 9d284cc57e216d05fc3e41de3d8561e4
BLAKE2b-256 2d6aa876263af98a8b0faf433c0066dc2e082b910939de60a4cde3c836ef169c

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210519162850-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210519162850-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 342647eab8b521195314b738a10f9c9126cb21e6288856694fdf773a5f629f9e
MD5 f2cda4047e0a4fd4d89a759112e27fd7
BLAKE2b-256 0bfd262675bf0a38a44465118e46823aece65ae0ac30578dcd66fd5970ce0997

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210519162850-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210519162850-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 032fbe27cbf8b0b2e70e38a649deee546146bea35fa21b588d0f93ecc70f426f
MD5 3f96da2f8178e6d12551a5ee1a561d02
BLAKE2b-256 f65e3d3bf291ea3613cce98d8ac205f47389ff0c1091450e4550efce3d6d5fa9

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210519162850-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210519162850-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 37bbebf632b2ea4f7c6bfcf7f7fe83a50d9da26a293d6d202a58ef07ee84a64d
MD5 da07f2267d07d69484a6cecc4b63fdcb
BLAKE2b-256 2501ec99c81138e528076b78e5a98f6ff4bdbfa5a2a1e1c702a7c0a87b015e3d

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210519162850-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210519162850-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 cd367fbf8f544e53048eaa74ca021f041dcd02daa16969134aa7069a41e52f6a
MD5 c1642eab85cf38d6bbd93a66f87598c3
BLAKE2b-256 11974babc60b21c392aca8ee7388e60ef3b609767d7f2352fd50e564325679ab

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210519162850-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210519162850-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 43a62f2f4ddd5bfc9cce0ee1635806b427042f27ac37a650e010a38dad7819d3
MD5 5d43719e900036943fc11e740624b11a
BLAKE2b-256 c2a7f6d7accc60e6b78df893c7268e71b52d397d51a2f50c364ba10eaa12a79e

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210519162850-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210519162850-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 21a40eba1ab638122649a0ac252c1ae964a601add791e11b6c7592f96d957c9c
MD5 b34eddab5aaa4c87f506a335dfcfe740
BLAKE2b-256 1eb8bfcd23386197369a25c4a30b4285a42bbe17b77178ef3e0213e38841f312

See more details on using hashes here.

File details

Details for the file tensorflow_io_nightly-0.18.0.dev20210519162850-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_nightly-0.18.0.dev20210519162850-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 48d63ad341c0cd580b3546e65650bce4b41599ac62a58a768e92e64123b4c9b8
MD5 2c253de4199add461f3741aa854ab86d
BLAKE2b-256 55f10010c22e1cd211381b35aeccf8725d4d96c7089714a72dba18c51a2baa9e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page